电力系统分析潮流计算实验报告姓名:XXXXXX学号:XXXXXXXXXX班级:XXXXXXXX一、实验目的掌握潮流计算计算机算法的方法,熟悉MATLAB的程序调试方法。二、实验准备根据课程内容,熟悉MATLAB软件的使用方法,自行学习MATLAB程序的基础语法,并根据所学知识编写潮流计算牛顿拉夫逊法(或PQ分解法)的计算程序,用相应的算例在MATLAB上进行计算、调试和验证。三、实验要求每人一组,在实验课时内,调试和修改运行程序,用算例计算输出潮流结果。四、程序流程五、实验程序%本程序的功能是用牛拉法进行潮流计算%原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据%B1是支路参数矩阵%第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号%第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗%第四列为支路的对地导纳参数,含变压器支路此值不代入计算%第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器%B2为节点参数矩阵%第一列为节点注入发电功率参数%第二列为节点负荷功率参数%第三列为节点电压参数%第四列%第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵%第一列为节点编号%第二列为节点对地参数%默认算例%n=4;%n1=4;%isb=4;%pr=0.00001;%B1=[120.1667i00.88641;130.1302+0.2479i0.0258i10;140.1736+0.3306i0.0344i10;340.2603+0.4959i0.0518i10];%B2=[001002;0-0.5-0.3i1002;0.201.05003;0-0.15-0.1i1.05001];%X=[10;20.05i;30;40];clear;clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)');ifnum==1n=4;n1=4;isb=4;pr=0.00001;B1=[120.1667i00.88641;130.1302+0.2479i0.0258i10;140.1736+0.3306i0.0344i10;340.2603+0.4959i0.0518i10];B2=[001002;0-0.5-0.3i1002;0.201.05003;0-0.15-0.1i1.05001];X=[10;20.05i;30;40];elsen=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X=');endTimes=1;%迭代次数%创建节点导纳矩阵Y=zeros(n);fori=1:n1ifB1(i,6)==0%不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else%含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3);endendfori=1:n1Y(i,i)=Y(i,i)+X(i,2);%计及补偿电容电纳enddisp('导纳矩阵为:');disp(Y);%显示导纳矩阵%初始化OrgS、DetaSOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数h=0;j=0;fori=1:n%对PQ节点的处理ifi~=isb&B2(i,6)==2%不是平衡点&是PQ点h=h+1;forj=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfori=1:n%对PV节点的处理,注意这时不可再将h初始化为0ifi~=isb&B2(i,6)==3%不是平衡点&是PV点h=h+1;forj=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%创建PVU用于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;fori=1:nifB2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endend%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量h=0;fori=1:n%对PQ节点的处理ifi~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);%delPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);%delQiendendt=0;fori=1:n%对PV节点的处理,注意这时不可再将h初始化为0ifi~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);%delPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;%delUiendend%DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1);h=0;fori=1:nifi~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭endend%创建Jacbi(雅可比矩阵)Jacbi=zeros(2*n-2);h=0;k=0;fori=1:n%对PQ节点的处理ifB2(i,6)==2h=h+1;forj=1:nifj~=isbk=k+1;ifi==j%对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else%非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endifk==(n-1)%将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendendk=0;fori=1:n%对PV节点的处理ifB2(i,6)==3h=h+1;forj=1:nifj~=isbk=k+1;ifi==j%对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else%非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endifk==(n-1)%将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendenddisp('初始雅可比矩阵为:');disp(Jacbi);%求解修正方程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;%inv矩阵求逆%DetaU%修正节点电压j=0;fori=1:n%对PQ节点处理ifB2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfori=1:n%对PV节点的处理ifB2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend%B2%开始循环*******************************