数理方法习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

200712!#$%&’()*+,-./’012(119)3456789:;=Æ!?@A!BCD#EF$GH8IJK%LM20071218NO1.11.(1)i=cosπ2+isinπ2=eiπ2,(2)−1=cosπ+isinπ=eiπ(3)ρ=2,tanϕ=−√3,ϕ=2π3−1+i√3=2(cos2π3+isin2π3)=2ei2π3(4)1−i1+i=(1−i)22=−i=cos3π2+isin3π2=ei3π22.(1)3√i=3√eiπ2=eiπ2+2kπ3=ei(π6+2kπ3),(k=0,1,2,)(2)a+bia−bi=(a+bi)2a2+b2=a2−b2a2+b2+i2aba2+b23.14.z0RP5.z=reiθ,zρeiϕ=rρei(ϕ+θ),ρeiϕzz(ρ1)(ρ1)ρQ(ρ0)Q(ρ0)Rϕ6.z4=−1=eiπ,Æzk=eiπ+2kπ4(k=0,1,2,3).z0=eiπ4z1=ei3π47.|v|=√2,argv=3π4.8.2ÆÆ|z1−z2|≥||z1|−|z2||,|z1+z2|≤|z1|+|z2|NO1.31.C−R12x+ay=dx+2y,ax+2by=−2cx−dy.x,ySa=d=2,b=c=−1,Tu,v!!a=d=2,b=c=−1f(z)2.|f(z)|2=u2x+v2x=uxvy−vxuy=uxuyvxvy.3.f(z)=u+iv(1)Df(z)≡0,ux+ivx≡0,ux=vx≡0vy−iuy≡0,uy=vy≡0,#$u(x,y)=c1,v(x,y)=c2,(c1,c2%),f(z)=c1+ic2=c(%).(2)Ref(z)=c,ux=uy=0,#$vy=vx=0,v=˜cf(z)=c+i˜c%UImf(z)=cUf(z)%(3)|f(z)|=u2+v2=c,xy&2uux+2vvx=0,2uuy+2vvy=0,C−Ruux−vuy=0,uuy+vux=0,u’v’((u2+v2)ux=0,ux=0(u,v0);v’u’(uy=0,#$Uu=c,f(z)%4.(1)f(z)=Rez=x,ux=1=vy=0,(2)f(z)=|z|=√x2+y2,ux=x√x2+y2=vy=0(!z=0),z=0,fz=|z|z!z=0,f(z)&5.ux=vy,vx=−uy,x=ρcosϕ,y=ρsinϕ,uρ=uxcosϕ+uysinϕ,vϕ=vx(−ρsinϕ)+vyρcosϕ=ρ(uysinϕ+uxcosϕ)=ρuρ,(1)uϕ=ux(−ρsinϕ)+uyρcosϕ,vρ=vxcosϕ+vysinϕ=−uycosϕ+uxsinϕ=−1ρuϕ,(2)(1),(2)V)#$C−Ruρ=1ρuϕ,vρ=−1ρuϕ6.(%WV)#$*uxx+uyy=0,x=ρcosϕ,y=ρsinϕ,ρ=√x2+y2,ϕ=arctanyx,ux=uρxρ+uϕ(−yρ2),uy=uρyρ+uϕxρ2,2uxx=uρρx2ρ2+uρ(1ρ−x2ρ3)+uϕϕy2ρ4+uϕ2yxρ4,uyy=uρρy2ρ2+uρ(1ρ−y2ρ3)+uϕϕx2ρ4+uϕ·−2yxρ4,uxx+uyy=uρρ+1ρuρ+1ρ2uϕϕ#$XV)#$*uρρ+1ρuρ+1ρ2uϕϕ=07.u&W(!&uxx+uyy=2−2=0,+’,v,dv=vxdx+vydy=−uydx+uxdy=(−2x+2y)dx+(2x+2y)dy,v=x0−2xdx+y0(2x+2y)dy+c=−x2+2xy+y2+c,f(z)=u+iv=(x2+2xy−y2)+i(−x2+2xy+y2+c)=(1−i)z2+ic8.(1)V)u=1ρ2cos2ϕ,vρ=−1ρuϕ=2ρ3sin2ϕ,vϕ=ρuϕ=−2ρ2cos2ϕ,dv=2ρ3sin2ϕdρ−2ρ2cos2ϕdϕ=d(−1ρ2sin2ϕ)v=−1ρ2sin2ϕ+c,f(z)=1ρ2(cos2ϕ−isin2ϕ)+ic=1ρ2e−i2ϕ+ic=1z2+ic,f(∞)=0,Uc=0,f(z)=z−2.-.(/WV)v=−2xy(x2+y2)2+c,(f(z)=1z2.(2)du=uxdx+uydy=vydx−vxdy=12dx2−12dy2−2d(xy),u=12x2−12y2−2xy+c,f(z)=u+iv+c=iz2+12z2+c,f(0)=0,Uc=0.f(z)=(12+i)z2.NO1.431.(1)|ez2|=|ex2−y2+2ixy|=ex2−y2.(2)Ln(−1)=i(π+2kπ)=(2k+1)πi(k∈Z)(3)(1+i)i=eiLn(1+i)=ei[ln√2+i(π4+2kπ)]=eiln√2·e−(π4+2kπ).(4)i√i=z,Lnz=1iLni=1i·i(π2+2kπ)=π2+2kπ,z=eπ2+2kπ.(5)sin(a+ib)=sinacosib+cosasinib=sinacoshz+icosasinhb,cos(a+ib)=cosacosib−sinasinib=cosacoshb−isinasinhb,2.(1)ez=−1,z=Ln(−1)=i(π+2kπ)=i(2k+1)π.(2)sinz=2,eiz−e−iz=4i,e2iz−4ieiz−1=0,eiz=2i±√−3=(2±√3)i,iz=Ln(2±√3)i=ln(2±√3)+i(π2+2kπ),z=(12+2k)π−iln(2±√3)3.(1)z=x+iy,ez=ex(cosy+isiny)=ex(cosy−isiny)=ex−iy=ez(2)sinz=(eiz−e−iz2i)∗=e−iz−eiz−2i=eiz−e−iz2i=sinz(3)cosz=(eiz+e−iz2)∗=e−iz+eiz2cosz4.(1)z=ρeiϕ,zn=ρn(cosnϕ+isinnϕ),#,u=ρncosnϕ)’,v=ρnsinnϕ*$&uρ=nρn−1cosnϕ=1ρvϕ,vρ=−1ρuϕ,zn+X(zn)=nzn−1.0#(xn)=nxn−1X..(f(z)=ux+ivx=(uρρx+uϕϕx)+i(vρρx+vϕϕx)=[uρcosϕ+uϕ(−sinϕϕ)]+i[vρcosϕ+vϕ(−sinϕϕ)](zn)=[nρn−1cosnϕcosϕ+nρn−1sinnϕsinϕ]+i[nρn−1sinnϕcosϕ−nρn−1cosnϕsinϕ]=nρn−1[cos(n−1)ϕ+isin(n−1)ϕ]=nzn−1.,%.n=1z=1=1·z01n=k&(zk)=kzk−1,(zk+1)=(zzk)=zzk+z(zk)=zk+z·kzk−1=(k+1)zk&Y$&(zn)=nzn−1(2)ez=ex(cosϕ+isinϕ),u=excosϕ,v=exsinϕux+ivx=excosϕ+iexsinϕ=ez,(ez)=ez4NO1.51.-’f(z)=w(z)=a,−→f=a−→i.(ϕ=Reaz=ax,1(.x=c.)ψ=Imaz=ay,).y=cc#2.t=x2+y2,txx+tyy=4=0,t*++Z(#,u,u=F(t)+uxx+uyy=(Ft2x+Ftxx)+(Ft2y+Ftyy)=4F(x2+y2)+4F=4Ft+4F=0,FF=−1t,F=c1t,F=c1lnt+c2,u=c1ln(x2+y2)+c2.dv=−uydx+uxdy=−2c1yx2+y2dx+2c1xx2+y2dy,v=2c1arctanyx+c3,(−2c1arctanxy+c3).(f(z)=u+iv=c1ln(x2+y2)+c2+i(2c1arctanyx+c3)=2c1(ln|z|+iargz)+c2+ic3=2c1lnz+c2+ic3,(c1,c2,c3#).3.w=u+iv,w2=u2−v2+2iuv=z=x+iy,u2−v2=x,2uv=y,#$y2=4u2v2=4u2(u2−x),y2=4v2(v2+x),u=c1,23.*y2=4c21(c21−x)4,/.[\5v=c2,1(.*y2=4c22(c22+x),4,/.[0(z=ρeiϕ,w=±√ρeiϕ223.√ρcosϕ2=c1,ρ=2c211+cosϕ,/.1(.√ρsinϕ2=c2,ρ=2c221−cosϕ(,/.4..f(z)=i2σ(lnR−lnz)=i2σ(lnR−ln|z|−iargz)(v=Imf(z)=2σlnR−2σln√x2+y2=2σlnR−σln(x2+y2)3-−→E=−∇v=−(vx−→i+vy−→j)=2σxx2+y2−→i+2σyx2+y2−→j,E=|−→E|=2σ√x2+y2=2σρ.6ES=qε0,2σρ·2πρ=2πRτε0,]τ^2/τ=2σε0R..(0u=Ref(z)=2σargz=2σϕ.^2/τ,71^22’N,N=du=20π2σdϕ=4πσ..6N=2πRτε0,τ=2σε0R.NO2.21.(1)c:y=x=t,t#01cRezdz=10t(1+i)dt=12(1+i)(2)#z=0z=1,8*x=t,y=0,t#01;#z=1z=1+i,8*x=1,y=t,t#015cRezdz=10tdt+10idt=12+i2.(1)|z|=1(z−2)dz=0.(2)|z−1|=41(z−1)2dz=0.(3)|z|=4(1z+i+2z−3+3z−5)dz=2πi+2×2πi+0=6πi.(4)−1−iisinzdz=−cosz|−1−ii=cosi−cos(1+i)=cosh1(1−cos1)+isin1sinh1.3.13_4c‘56692:7437‘44.XcDz05;z1a;c!76.c)c8.c1560=c1f(z)dz=c+c−f(z)dz,cf(z)dz=cf(z)dzT97cf(z)dzb)8!#$c5;)a;$6%&927]D0|z|2’c1|z|=1Pc2$P5;−1a;1c11zdz=0πe−iϕieiϕdϕ=−πi;c21zdz=2ππidϕ=πi)8&#NO2.31.(1)csinzzdz=2πi·sin0=0.(2)12πi|z−1|=4z2(z+4)2dz=0.(3)|z|=2cosπz(z−1)5dz

1 / 98
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功