说人有感情,这似乎是个没有什么可大惊小怪的事情。可感情是什么,答案就不是那么显而易见能够明白描述出来了。为了让这个问题更易解决一些,心理学把感情这个概念先划分为2个层面,那就是情感和情绪。可感情这个东东并不是块豆腐,划分也不能象刀子那样整齐划一,并且各家有各家标准无法统一,这也就是出现了如此众多情绪定义的原因,也是各派之间争吵不休起点。不过,尽管大家的标准并不统一,但毕竟有共同认可的地方,那就是:1,情绪涉及身体的变化,会在生理(血压,心跳频率,呼吸频率,腺体分泌)和行为(面部表情,肌体语言,行为模式)上表现出来。2,情绪和外部或内部刺激(S)有关,也是生物体应激反应或行为(R)的准备阶段。3,情绪更多和意识中的潜意识部分关联,但也不排除有意识部分。比如,当我们高兴时,我们可能并不知道自己在高兴;但只要我们主动注意,又能体验到自己在高兴这个状态。(这点很重要,表明情绪有自己独有的产生运行机制,否则按照2,情绪就纯粹是S-R的中转站了)4,情绪涉及到了认知成分,和事物(内在或外在)的评价有关,但又不象思维认知那样明确更多是一种潜意识的状态。(这点把情绪和情感做了初步的界定,比如,一些人怕蛇却不怕蜘蛛,而一些人怕蜘蛛却不怕蛇(当然有人蛇和蜘蛛都怕)。某个人为什么会怕蛇或怕蜘蛛,某个男人为什么喜欢这个女人而不是那个女人,这是情感方面的内容;而无论是蜘蛛还是蛇,无论是这个女人还是那个女人,也就是说无论对象如何变换,恐惧和喜欢本身则有很大的共同点,这就落入情绪定义范围内。)按照这个描述性定义,心理学家对文学家和社会学家对感情的描述做出了分类,确定了一批属于情绪范围的形容词。这些形容词数量很多,一些只是某种特定情绪量上的不同表达,比如“微笑”“开怀大笑”都是不同程度高兴的面部表情描述。当然,还有一些是无法归于强度变化的则先归为不同的分类,比如“微笑”和“皱眉”显然是不同情绪在面部表情上的不同表达方式。这些不同的特定情绪数量还有很多,心理学家又提出了基本情绪和复合情绪这些概念认为复合情绪是由基本情绪组合而来。对于基本情绪的定义是幼体一出生就具有的情绪,至于到底是哪些,一般说来不同教科书和不同流派就不太一样了。对于人类,大体上包括以下几个:1)快乐。2)悲伤。3)期待。4)厌恶。5)恐惧。6)愤怒。应该说,这个分类有很大的任意性,并没有统一的标准。比如有的心理学家就认为,恐惧和期待,在刚出生的婴儿身上是观察不到的,因而是受后天环境影响学习而来,更应属于复合情绪是发展心理学的范畴。不管基本情绪到底包含哪几个,当前大多数心理学家对存在基本情绪这个事情却是没有异议的,并且又基本同意,基本情绪存在是神经系统的不同神经元成分和神经元之间不同连接方式决定的。这,就延伸到了神经科学的范畴内。本系列贴,就是试图从神经网络的结构方面,来描述基本情绪的形成机制,以梳理最近一段时间内读到的心理学和神经科学方面的知识。当然,由于这些领域多是处在知识积累阶段,很多问题都没有定论,这个结构描述是非常粗糙的。神经元的演化我们知道,直到现在,地球上仍然有单细胞生物生存,而我们也是从远古某个单细胞生物一步步进化而来。单细胞生物当然不会有什么神经元,可他们仍会对刺激做出反应,这是细胞自身具有的能力。随着单细胞生物向多细胞生物演化,起初只是很多单细胞生物汇聚在一起共同生活,比如绿藻;后来形成最简单的多细胞生物,比如海绵;此时生物体仍然没有分化出来专门的神经元细胞,他们靠细胞本身的应激反应和细胞间的组织液来维持联系,这就是最早的激素调节。而现存生物中出现最早的神经系统是腔肠动物的网状神经系统,代表是水螅。那么神经元必定出现在远古水螅之前了,只是没有留存下来也无化石,我们永远不会知道那是什么生物了。组成水螅网状神经系统的神经元,已经具备了当前神经元的基本形态,有胞体和突出,但还没有树突与轴突之分,突出之间相互靠近能够直接传递电信号,这就是水螅网络神经系统的生理基础。因为能够直接传递电信号,这种神经网络是全链结的。也就是说,只要一点接收到刺激,那么整个生物体就会做出反应,是真正的牵一发而动全身。很显然,这种应激模式不能做到精确化和局域化。这种类型的电神经细胞在人体内仍有留存,比如人眼中,就有这种电神经元链结视杆细胞相应神经元的树突。在高级一点的腔肠动物中,比如海葵或者水母,就演化出来和我们类似的神经元细胞,即依靠神经递质传递电信号的神经细胞,这样信息的传递模式就变成:电-化学-电。后来,轴突突触里的神经递质演化出多种不同的成分从而分化成不同的神经元,相应的,树突中的受体也演化出不同的类型,这使局域化精确化成为可能。据说大自然这个上帝是个裁缝,他只会修修补补这拼那凑的干活。结果就是作为万物之灵的我们,现在体内仍留有多种调节模式。其中最重要的当然就是神经模式,电信号依靠神经递质在轴突和树突构成的高速公路上传播;其次就是激素模式了,激素靠组织液扩散或血液运输来传递信息;最后就是细胞或其构成的器官自身调节各自为战,也能适应内外环境的一些变化,当然这是最不重要也最有局限的方式。这里有个关键点,那就是很多种激素和神经递质其实就是同一种东西,是称呼他们为神经递质还是激素,只是取决于他是通过神经网络传播还是组织液或血液传播。另外,当某部分组织分化出来专门分泌激素,并通过组织液或血液传播,我们称之为腺体;而假如某神经元也分泌出一些类似物质,并通过组织液传播,我们却仍然称之为神经元。这种神经元就存在在情绪中枢中,影响调节着我们的情绪。神经元生物电现象生物电现象是很多类细胞共同具有,比如医学中的心电图脑电图胃电图等,只是神经元的生物电现象更加复杂多样。并且神经元的特殊功能又和他的生物电特性密不可分,了解了神经元生物电机理,对理解神经元功能会有很好的帮助。这里面有几个重要的概念就是静息电位,动作电位,电紧张电位以及阀值电位。静息电位是指当神经元处于平静状态时,胞体内外电压差,由于习惯上一般把组织液的电位定义为零,神经元的静息电位约为-70mv。静息电位之所以会存在,主要是神经元的膜机制导致的。细胞膜上存在钠离子泵和钾离子泵(没有氯离子泵),同时细胞膜对钠钾氯离子又有通透性(不过,对3个离子通透率不一样)。为了说明其中细节,我们先分析钠离子的转运过程。当钠离子泵把钠离子从细胞内转运到细胞外时,就形成了细胞内负电位(以组织液电位为零),而这个负电位对钠离子由内至外的运动产生一个阻力作用,这样就消减了钠离子泵的转运能力;同时,当因钠离子泵往外泵运钠离子时,会导致钠离子外部浓度大于内部浓度,因而有个往内部渗透的机制,而负电位对这个过程起到促进作用,因而渗透速率会随着浓度差增大而增大;因而整个过程最终会达到平衡,形成一个稳定的负电位。在这里,钠离子泵和膜对钠离子的通透率决定了内外电位差,通透率越低,电压差越高。显然,假如通透率为零,那么电压差完全取决于钠离子泵克服电压差的能力。对于钾离子会有同样情形发生,只不过钾离子泵是主动的把钾离子从细胞外转运到细胞内,达到平衡后会形成一个正电位(组织液为零)。对于氯离子,由于没有氯离子泵,因而只是电位驱动导致内外浓度不平衡,而渗透速率又抵消了这个不平衡,从而达到一个平衡态。在平衡态时,组织液氯离子浓度高于细胞内。当然,上述3个过程其实是同时起作用的,因而最终达到平衡时,形成了一个-70mv的负电位(组织液为零),这就是静息电位。通过上述分析可以看出,膜的通透率是决定膜内外电位差因素之一,这是个非常重要的机制,是神经元能够产生兴奋抑制现象的生理基础。那么,又是什么因素决定了膜的通透率呢?还是以钠离子为例,首先,膜本身就有一定的通透性;其次,膜上存在2种钠离子门,一种是电钠离子门,一种是化学钠离子门。当他们关闭时,膜的通透性就由膜本身的通透性决定。很多化学钠离子门就构成了所谓的受体,当其中一个化学钠离子门接收到轴突突触释放的神经递质就开放,因而就改变了膜在这一点的通透性(氯离子和钾离子不能通过这个离子门),造成的后果就是让钠离子因浓度差而向细胞内渗透。这一过程受到几个因素影响。1,钾离子形成正电位对这一过程有抑制作用,相当于施加了一个恒定的正电位。2,渗透速率会随着内外浓度差降低而降低,这也是一个抑制过程。3,因膜在这一点通透率增加,钠离子本身电位平衡态被打破,会向新的平衡过度,这是个促进因素。在这几个因素的共同作用下,膜内外会达到一个新的平衡,此时在这一点上新的膜电位低于-70MV。接下来就是电钠离子门的舞台了。电钠离子门有个特性,当膜的电压高于一个数值,那么他就会打开。一般来说,这个电位约高于静息电位20MV左右,对于大多数神经元来说,是-50MV,这就是阀值电位。一般来说,单个的化学钠离子门触发,是无法让某点的新电位达到-50mv,但当多个化学钠离子门同时被触发,或者一个化学钠离子门在一定时间内被多次触发,都有可能导致某点的电位突破-50mv。此时,电钠离子门被触发打开并发生连锁反应,导致了更多的电钠离子门打开,这个正反馈导致此处电压迅速升高,直到达到此时膜渗透性所决定新的平衡态,这个数值是50mv。这就是动作电位。当某处形成动作电位后他并不是一个绝对的峰值而是类似正态分布。膜的通透性和此处膜围起来的胞体直径决定了这个分布的宽度。距离中心位置不同点,电位数值也不同,这个以距离为参数的电位就是电紧张电位。显然,只要电紧张电位大于阀值电位,那么所对应的那个部位也会被激发到50mv。而中心处的电钠离子门,开放一段时间后就会关闭,并且在一段时间内不再被激活,这就是失活。随着电钠离子门的关闭,膜通透性恢复到原来数值,而新的一轮钠离子输送开始并达到平衡,从而恢复原来的-70mv的静息电位。这样以来,总的效果就是动作电位构成的一个电脉冲由树突向胞体再轴突传播过去。这个过程对应的就是神经元兴奋,而神经递质就是兴奋性递质,受体是兴奋性受体。那么,抑制性受体又是怎么回事呢?抑制性受体控制的是化学氯离子门,当接收到相应的神经递质后,化学氯离子们就打开。和钠离子机制类似,也会导致氯离子由浓度高的组织液向膜内渗透。但由于氯离子带负电,结果是导致此处膜电位降低到-90mv左右,由于没有电氯离子门,所以这个变化不是很大。由于没有氯离子泵,恢复到正常的静息电位时间也比较长。总体效果就是让受体以及附近区域更不容易激化成兴奋状态。那么钾离子又起到什么作用呢?首先,钾离子形成正电位是平衡钠离子形成负电位的重要机制;其次,钾离子正电位还是形成阀限的重要组成部分。而阀限是避免神经元之间因偶然因素而过激反应的重要机制。另外,在大脑皮层和自主神经节里,观察到了一种慢兴奋和慢抑制,延拓时间达500ms,兴奋和抑制持续时间可达数秒,这可能和钾离子有关。不过,具体机制不清楚。这就是神经元的生物电现象,费了这么多力气,实质上是想搞明白以下概念:不同成分的神经元互相联络构成相对独立的神经中枢时,有的神经元的活动,并不会导致神经中枢状态的改变,但他的活动却使别的神经元的激发更加容易或者更加困难。这时,我们就说这个神经元起到了易化或抑制作用。同样,在神经中枢之间的联络上,这个概念仍然使用,有一些神经中枢,就是使别的神经中枢的活动更加易化或者抑制。而和情绪有关的神经中枢,就是其中最重要的一个。在韩济生主编的《神经科学原理》中,对氯离子有不同论述:1,存在和氯离子对应的电氯离子门,但这个电氯离子门对应的阀值电位是多少,则没有细说。假如这点是对的,那么因氯离子引起的超极化抑制过程,也能象钠离子引起的兴奋一样,在膜上传播。(否则抑制只能是局域性,这曾让我感到困惑)2,存在氯离子泵,这点在别的教材上没有类似说法,存疑。对于钾离子,《神经科学原理》也有不同论述,认为:钠离子引起膜从-70mv至50mv的快速去极化后,电钠离子门失活;此时,电钾离子门被激活,钾离子的流动导致膜电位快速从50mv降低到-70mv,在此过程中甚至有超激化现象。在姚泰主编的《生理学》,对此有类似陈述。由此看来,是钠钾离子共同作用,才导致膜动作峰值电位出现。附《生理学》中相关问题图片附件图1.jpg(40.66KB)2009-8-1812:29图2.jpg(2