浙江省杭州市2016年高考数学二模试卷(文科)(解析版)一、选择题(共8小题,每小题5分,满分40分)1.设集合A={x|x2﹣2x≤0},B={y|y=x2﹣2x},则A∩B=()A.[﹣1,2]B.[0,2]C.[﹣1,+∞)D.[0,+∞)2.若某几何体的三视图(单位:cm)如图所示,且俯视图为正三角形,则该几何体的体积等于()A.3cm3B.6cm3C.cm3D.9cm33.设等差数列{an}的前n项和为Sn,则“a2>0且a1>0”是“数列{Sn}单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.若直线x=m(m>1)与函数f(x)=logax,g(x)=logbx的图象及x轴分别交于A,B,C三点,若=2,则()A.b=a2B.a=b2C.b=a3D.a=b35.函数f(x)=3sin(x∈R)的最大值等于()A.5B.C.D.26.△ABC中,∠C=90°,AC=4,BC=3,D是AB的中点,E,F分别是边BC、AC上的动点,且EF=1,则的最小值等于()A.B.C.D.7.设双曲线C:﹣=1(a>0,b>0)的顶点为A1,A2,P为双曲线上一点,直线PA1交双曲线C的一条渐近线于M点,直线A2M和A2P的斜率分别为k1,k2,若A2M⊥PA1且k1+4k2=0,则双曲线C离心率为()A.2B.C.D.48.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)﹣g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)﹣f(x2)]2>[g(x1)﹣g(x2)]2恒成立.则()A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数二、填空题(共7小题,每小题6分,满分42分)9.计算:2log510+log5=,2=.10.设函数f(x)=2sin(2x+)(x∈R),则最小正周期T=;单调递增区间是.11.在正方形ABCD﹣A1B1C1D1中,E是AA1的中点,则异面直线BE与B1D1所成角的余弦值等于,若正方体边长为1,则四面体B﹣EB1D1的体积为.12.若实数x,y满足,则x的取值范围是,|x|+|y|的取值范围是.13.抛物线y2=2px(p>0)的焦点为F,点A,B在抛物线上,且∠AFB=120°,过弦AB中点M作准线l的垂线,垂足为M1,则的最大值为.14.设实数a,b满足0≤a,b≤8,且b2=16+a2,则b﹣a的最大值为.15.定义min{a,b}=,则不等式min{x+,4}≥8min{x,}的解集是.三、解答题(共5小题,满分68分)16.在△ABC中,内角A,B,C所对的边分别为a,b,c,若msinA=sinB+sinC(m∈R).(I)当m=3时,求cosA的最小值;(Ⅱ)当A=时,求m的取值范围.17.在底面是正三角形的三棱柱ABC﹣A1B1C1中,AB=2,AA1⊥平面ABC,E,F分别为BB1,AC的中点.(1)求证:BF∥平面A1EC;(2)若AA1=2,求二面角C﹣EA1﹣A的大小.18.设公差不为0的等差数列{an}的首项a1=1,前n项和为Sn,且,,成等比数列.(1)求数列{an}的通项公式及Sn;(2)设bn=,tn=,且Bn,Tn分别为数列{bn},{tn}的前n项和,比较Bn与Tn+的大小.19.设函数f(x)=|x2﹣a|﹣ax﹣1(a∈R).(I)若函数y=f(x)在R上恰有四个不同的零点,求a的取值范围;(Ⅱ)若函数y=f(x)在[1,2]上的最小值为g(a),求g(a)的表达式.20.设抛物线Γ:y2=2px(p>0)上的点M(x0,4)到焦点F的距离|MF|=.(1)求抛物线Γ的方程;(2)过点F的直线l与抛物线T相交于A,B两点,线段AB的垂直平分线l′与抛物线Γ相交于C,D两点,若=0,求直线l的方程.2016年浙江省杭州市高考数学二模试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.设集合A={x|x2﹣2x≤0},B={y|y=x2﹣2x},则A∩B=()A.[﹣1,2]B.[0,2]C.[﹣1,+∞)D.[0,+∞)【分析】分别求出集合A、B的范围,取交集即可.【解答】解:∵集合A={x|x2﹣2x≤0}=[0,2],B={y|y=x2﹣2x}={y|y≥﹣1},则A∩B=[0,2].【点评】本题考查了解不等式问题,考查集合的运算,是一道基础题.2.若某几何体的三视图(单位:cm)如图所示,且俯视图为正三角形,则该几何体的体积等于()A.3cm3B.6cm3C.cm3D.9cm3【分析】由三视图可知:该几何体是由有关三棱柱截去一个三棱锥剩下的几何体.【解答】解:由三视图可知:该几何体是由有关三棱柱截去一个三棱锥剩下的几何体.∴该几何体的体积V=×4﹣=cm3.故选:C.【点评】本题考查了三视图的有关知识、三棱柱与三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.3.设等差数列{an}的前n项和为Sn,则“a2>0且a1>0”是“数列{Sn}单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】设等差数列{an}的公差为d,d≠0.可得:Sn=na1+d=﹣,数列{Sn}单调递增,可得d>0,≤1,因此d+2a1≥0.由a2>0且a1>0,可得a2=a1+d>0.即可判断出结论.【解答】解:设等差数列{an}的公差为d,d≠0.Sn=na1+d=n2+=﹣,∵数列{Sn}单调递增,∴d>0,≤1,可得d+2a1≥0.由a2>0且a1>0,可得a2=a1+d>0.∴“a2>0且a1>0”是“数列{Sn}单调递增”的既不充分又不必要条件.故选:D.【点评】本题考查了函数的性质、不等式的性质、等差数列的通项公式及其前n项和公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.若直线x=m(m>1)与函数f(x)=logax,g(x)=logbx的图象及x轴分别交于A,B,C三点,若=2,则()A.b=a2B.a=b2C.b=a3D.a=b3【分析】根据函数图象,由=2,可知,,则,则x=m时,f(m)=3g(m),代入函数求值,求得a、b的关系.【解答】解:由函数图象可知由=2,则,则A的坐标为(m,3g(m)),将A点坐标代入得:logam=3logbm,即,由函数的性质可知b=a3,故答案选:C.【点评】本题考查对数函数的性质及其应用,对函数图象的理解,属于基础题.5.函数f(x)=3sin(x∈R)的最大值等于()A.5B.C.D.2【分析】借助二倍角公式和辅助角公式,化简f(x)为一个三角函数式,由此得到最大值.【解答】解:∵f(x)=3sin(x∈R),=sinx+2cosx+2=(sinx+cosx)+2,=sin(x+φ)+2,其中sinφ=,cosφ=,∴函数f(x)的最大值为,故选:B【点评】本题考查函数式的化简,借助二倍角公式和辅助角公式.6.△ABC中,∠C=90°,AC=4,BC=3,D是AB的中点,E,F分别是边BC、AC上的动点,且EF=1,则的最小值等于()A.B.C.D.【分析】建立平面直角坐标系,设E(x,0),求出的坐标,则可表示为x的函数,利用函数的性质得出最小值.【解答】解:以三角形的直角边为坐标轴建立平面直角坐标系,如图:则A(0,4),B(3,0),C(0,0),D(,2).设E(x,0),则F(0,).0≤x≤1.∴=(x﹣,﹣2),=(﹣,).∴=﹣+4﹣2=﹣﹣2.令f(x)=﹣﹣2,则f′(x)=﹣+.令f′(x)=0得x=.当0≤x时,f′(x)<0,当<x<1时,f′(x)>0.∴当x=时,f(x)取得最小值f()=.故选:B.【点评】本题考查了平面向量的数量积运算,建立坐标系是解题关键,属于中档题.7.设双曲线C:﹣=1(a>0,b>0)的顶点为A1,A2,P为双曲线上一点,直线PA1交双曲线C的一条渐近线于M点,直线A2M和A2P的斜率分别为k1,k2,若A2M⊥PA1且k1+4k2=0,则双曲线C离心率为()A.2B.C.D.4【分析】设P(m,n),即有﹣=1,即为=,由两直线垂直的条件:斜率之积为﹣1,以及直线的斜率公式,化简整理,结合离心率公式计算即可得到所求值.【解答】解:设P(m,n),即有﹣=1,即为=,由A1(﹣a,0),A2(a,0),A2M⊥PA1,可得PA1的斜率为=﹣,可得PA2的斜率为=k2=﹣k1,两式相乘可得,=,即有=,即为b=a,c==a,即有e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用点满足双曲线的方程,以及直线的斜率公式,考查化简整理的运算能力,属于中档题.8.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)﹣g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)﹣f(x2)]2>[g(x1)﹣g(x2)]2恒成立.则()A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数【分析】根据题意,不妨设x1>x2,f(x)单调递增,可得出f(x1)﹣f(x2)>g(x1)﹣g(x2),且f(x1)﹣f(x2)>﹣g(x1)+g(x2),根据单调性的定义证明即可.【解答】解:对任意x1,x2∈R(x1≠x2),不等式[f(x1)﹣f(x2)]2>[g(x1)﹣g(x2)]2恒成立,不妨设x1>x2,f(x)单调递增,∴f(x1)﹣f(x2)>g(x1)﹣g(x2),且f(x1)﹣f(x2)>﹣g(x1)+g(x2),∴F(x1)=f(x1)+g(x1),F(x2)=f(x2)+g(x2),∴F(x1)﹣F(x2)=f(x1)+g(x1)﹣f(x2)﹣g(x2)=f(x1)﹣f(x2)﹣(g(x2)﹣g(x1)>0,∴F(x)为增函数;同理可证G(x)为增函数,故选A.【点评】考查了对绝对值不等式的理解和利用定义证明函数的单调性.二、填空题(共7小题,每小题6分,满分42分)9.计算:2log510+log5=2,2=.【分析】利用对数的运算性质、对数恒等式即可得出.【解答】解:2log510+log5===2,2==.故答案分别为:2;.【点评】本题考查了对数的运算性质、对数恒等式,考查了推理能力与计算能力,属于基础题.10.设函数f(x)=2sin(2x+)(x∈R),则最小正周期T=π;单调递增区间是[kπ﹣,kπ+],k∈Z.【分析】由条件利用正弦函数的周期性和单调性,可得结论.【解答】解:∵函数f(x)=2sin(2x+)(x∈R),则最小正周期T==π,令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈Z,故答案为:π;[kπ﹣,kπ+],k∈Z.【点评】本题主要考查正弦函数的周期性和单调性,属于基础题.11.在正方形ABCD﹣A1B1C1D1中,E是AA1的中点,则异面直线BE与B1D1所成角的余弦值等于,若正方体边长为1,则四面体B﹣EB1D1的体积为.【分析】取CC1中点F,连接D1F,B1F,则BE∥D1F,故∠B1D1F为异面直线BE与B1D1所成的角.在△B1D1F中求出三边长,利用余弦定理或等腰三角形知识求出cos∠B1D1F,四面体B﹣EB1D1的体积等于三棱锥D1﹣BB1E的体积.【解答】解:取CC1中点F,连接D1F,B1F,则BED1F,∴∠B1D1F为异面直线BE与B1D1所成的角.设正方体棱长为1,则B1D1=,B1F=D1F==.∴cos∠B1D1F==.V=V===.故答案为:,.【点评】本题考查了正方体的结构特征,空间角的计算,棱锥的体积计算,属于中档题.12.若实数x,y满足,则x的取值范围是[