超声诊断学第一章绪论超声诊断学(UltrasonicDiagnosis):包括超声显像、普通X线诊断学、X线电子计算机体层成像(CT)、核素成像、磁共振成像(MRI)等,是以电子学与医学工程学的最新成就和解剖学、病理学等形态学为基础,并与临床医学密切结合的一门比较成熟的医学影像学科,(既可非侵入性地获得活性器官和组织的精细大体断层解剖图像和观察大体病理形态学改变,亦可使用介入性超声或腔内超声探头深入体内获得超声图像,从而使一些疾病得到早期诊断。超声诊断学的主要内容:1、脏器病变的形态学诊断和器官的超声大体解剖学研究;2、功能性检测;3、介入性超声(Interventionalultrasound)的研究;4、器官声学造影检查;超声诊断学的特点:1、超声波对人体软组织有良好的分辩能力,有利于识别生物组织的微小病变。2、超声图像显示活体组织可不用染色处理,即可获得所需图像,有利于检测活体组织。3、超声信息的显示有许多方法,根据不同需要选择使用,可获得多方面的信息,达到广泛应用。超声诊断学的优点:1、无放射性损伤,为无创性检查技术;2、取得的信息量丰富,具有灰阶的切面图像,层次清楚,接近解剖真实结构;3、对活动界面能作动态的实时显示,便于观察;4、能发挥管腔造影功能,无需任何造影剂即可显示管腔结构;5、对小病灶有良好的显示能力;6、能取得各种方位的切面图像,并能根据图像显示结构和特点,准确定位病灶和测量其大小;7、能准确判定各种先天性心血管畸形的病变性质和部位;8、可检测心脏收缩与舒张功能、血流量、胆囊收缩和胃排空功能;9、能及时取得结果,并可反复多次进行动态随访观察,对危重病人可床边检查;10、检查费用低廉,容易普及。(优势:无创,精确,方便)超声诊断发展简史:探索试验阶段:1942年(连续穿透式)临床实用阶段:50年代(脉冲反射式)A型、B型、M型、D型开拓性前进阶段:60年代飞跃发展阶段:70年代产生两个飞跃,灰阶成像和实时成像现代超声的里程碑—软组织灰阶成像(第一次革命)80年代数字扫描变换(DSC)、数字图像处理(DSP)等;彩色多普勒血流显像(CDFI)研究成功。反映功能的基础。(第二次革命)90年代心脏和内脏器官的三维超声成像、彩色多普勒能量图(CDE)、多普勒组织成像(DTI技术)、血管内超声、实时超声造影技术、介入性超声和超声组织定征等均有显著的新进展。气泡造影剂的分布状态及灌注全过程(第三次革命)超声诊断总的发展趋势是:在显示空间上从单维空间探测发展到二维超声显示—三维空间的立体超声图像。实时(real—time):使静态―――动态图像,其扫描速度超过24帧。第二章超声诊断的基础和原理1超声:为物体的机械振动波,属于声波的一种,其振动频率超过人耳听觉上限阈值[20000赫(Hz)或20千赫(kHz)]者。20Hz:次声波20--20000Hz:可闻波20000Hz:超声波(ultrasound)诊断用超声频率范围为2MHZ—10MHz,1MHz=106Hz2、声波(defintion):物体的机械性振动在具有质点和弹性的媒介中传播,且引起人耳感觉的波动。3、振源:声带,鼓面。介质:空气,人体组织接收:鼓膜,换能器4、超声诊断:应用较高频率超声作为信息载体,从人体内部获得某几种声学参数的信息后,形成图形(声像图,血流图)、曲线(A型振幅曲线,M型心动曲线,流速频谱曲线)或其他数据,用于分析临床疾病。在声像图等引导下,可作各种穿刺、取活检、造影或作治疗(介入性超声),亦属于广义的超声诊断范畴。二、声源、声束、声场与分辨力声源(soundsource):能发生超声的物体,又名超声换能器(transducer)—探头。声束(soundbeam):是指从声源发出的声波。声束的聚焦(convergence):平面型声源无论在近场区还是在远场区中的束宽过大,为提高图像质量,在探头表面加置声透镜聚焦。声场:超声场是在介质中有声波能量存在的范围,其强弱用声压和声强来表示。不同的超声源和传播条件形成不同的能量分布。近场:在邻近探头的一段距离内,束宽几乎相等,称为近场区,此区内声压和声强起伏变化大,是超声诊断中的死区。近场的长度与声源的尺寸、频率和介质有关。远场:在远离探头的一段距离内,声束开始扩散,远场区内声场分布均匀。分辨力(resolutionpower):分为两大类1、基本分辨力:指根据单一声束线上所测出的分辨两个细小目标的能力。1)轴向分辨力(axialresolution):指沿着声束轴位方向上不同深度超声仪可以区分的两个目标的最小距离。通常用3-3.5MHe探头,分辨力在1mm。探头的频率越高,分辨力越高,但穿透力越低。2)侧向分辨力(lateralresolution):指在与声束轴位方向垂直的平面上,在探头长轴方向的分辨力,即是可区分两个点目标的最小距离,取决于声束的宽窄,声束越窄,分辨力越高。3)横向分辨力(transverseresolution):指在与声束轴位方向垂直的平面上,在探头短轴方向的分辨力。横向分辨力越好,图像上反映组织的切面情况越真实。2、图像分辨力:是指构成整幅图像的目标分辨力。1)细微分辨力:用于显示散射点的大小。2)对比分辨力:用于显示回声信号间的微小差别。3、多普勒超声分辨力:是指多普勒超声系统测定流向、流速及与之有关方面的分辨力。1)多普勒侧向分辨力:与基本分辩力相同。2)多普勒流速分布分辨力3)多普勒流向分辨力4)多普勒最低流速分辨力4、彩色多普勒分辨力:1)空间分辨力2)时间分辨力三、人体组织的声学参数:密度(ρ)声速(c)波长:声波在完成一次完全振动的时间内所传播的距离。声特性阻抗(Z):表示介质传播超声波的能力。介质中某点的声压P与质点振动速度V之间的比位该点的声阻抗Z,Z=ρ*C(kg/m2s)界面(boundary):两种声阻抗不同的物体接触在一起时,形成的界面。四、人体组织对入射超声的作用散射(scattering):小界面对入射超声产生反射(reflection)折射(refraction)全反射totalreflection)绕射(diffraction)会聚(convergence)发散(divergence)衰减(attenuation)多普勒效应(Dopplereffect):反射与散射的区别:大介面回声强有方向性及角度依赖显示脏器轮廓外形和内部粗大的管道结构吸收衰减原因:介质的粘滞性、导热性、温度等,超声波机械能变为热能被组织吸收(absorption)声束发散,能量的散射及反射,使声能损耗,衰减(attenation)会聚和发散:声束在经越圆形低声速区后,可致声束会聚。(高速区—发散)超声特性:多普勒效应(血流中的红细胞时多普勒超声检测血流的基础。)声强(acousticintensity):空间峰值时间平均声强(SPTAI),在生物效应中最重要,100mW/cm2EDA510(k)超声诊断声强使用数据名称声强使用极限值(SPTAImW/cm2)心脏430周围血管720眼球17胎儿及其他94超声诊断的安全因素:在人体组织中对超声敏感者有中枢神经系统、视神经、视网膜、生殖腺、早孕期胚芽及3个月内早孕、孕期胎儿颅脑、胎心等。对这些脏器的超声检查,每一受检切面上其固定持续观查时间不应超过1分钟。超声的生物效应:高能量的超声波作用于生物组织,由于机械、热、空化等效应导致生物组织特性的改变称超声生物效应。机械、热效应—用于细胞按摩,理疗0.5—5w/cm2空化效应——用于碎石、治疗肿瘤50W/cm2一、脉冲回声式(pulsedechomode)基本工作原理:发射短脉冲超声—接收放大—数字扫描转换技术(使各种任何扫查型式的超声图转换成通用的电视制扫描模式)—显示图形。A型(Amplitudemodulation):振幅调制型B型(Brightnessmodulation):辉度调制型M型(time-motionmode):活动显示型二、差频回声式:D型(Dopplermode)差频示波型彩色多普勒型(ColorDopplerflowImaging)三、时距测速式:不用多普勒原理,而直接用短脉冲超声测定一群红细胞在单位时间内所流动的距离,从而算出流速。四、非线性血流成像:超声造影M型超声基本原理:将回波强度加到显示器的控制极上作辉度调制,代表深度的时基线加到垂直偏转板上,而在水平偏转板上加一慢变化的时间扫描电压,使深度的时基线以慢速沿X方向移动,故静止目标的显示像是一条水平亮迹,摆动着的单M型显像为一正弦曲线。M型超声诊断仪:将沿声束方向各反射点位移随时间变化而显示,是一种以光点亮度来表示反射声信号强弱的仪器。将立体图象以投影图或透视图表现在平面上的显示方式,可从各个角度来观察该立体目标。1、三维表面成像2、三维透明成像3、三维多平面成像4、三维血管成像频谱多普勒:多普勒超声脉冲波进入人体后,将产生一系列复杂的频移信号,这些信号被接收器接收并处理之后,还必须经过适当的频率分析和显示,方能转变为有用的血流信息。1、多普勒频谱分析:利用数学的方法对多普勒信号的频率、振幅及其随时间而变化的过程进行实时分析的一种技术。2、多普勒频谱显示:多普勒信号经过频谱分析之后,通过两种方式加以输出,一种是音频输出,另一种是图象输出。3、多普勒音频输出:多普勒的发射和接收频率均为超声,但其频移的数值常为1--20干赫,恰为可闻声。故频移信号被放大后输入扬声器中,成为音频信号。4、多普勒图像输出:频谱显示是多普勒频移信号图象输出的主要方式。(一)连续多普勒(CW):探头用双晶片,一个连续发射脉冲波,另一个连续接收并转换成电信号和放大,经过基本电路的处理,即可在显示器上得到多普勒频移随时间变化的图谱。(二)脉冲多普勒(PW):其超声脉冲波的发射与接收均以一个探头进行,它是在一选择性的时间延迟后,才开始接受回声信号。彩色多普勒血流显像:由脉冲多普勒系统、自相关器和彩色编码及显示器等主要部分组成,它在频率分析和显示技术方面作了重大改进。彩色编码显示:彩色编码就是用不同的颜色来表示声信号的幅度的一种显示方式,所显示的彩色并不反映目标真实的颜色,是伪彩色。彩超的概念狭义上指彩色多普勒血流显像(CDFI)广义上包括:彩色多普勒速度图(CDV)彩色多普勒能量图(CDE)彩色多谱勒能量速度图(CCD)彩色多普勒组织成像(CDTI)经颅彩色多普勒血流显像(TCD)彩阶B超(CSBU)彩超和伪彩的区别:伪彩—灰阶到彩色变换,对二维灰阶图像进行彩色编码处理,用于彩色增强,可以提高图像的分辨力,丰富影像层次,增加实感,提高B型超声对病理组织变化的可视度。彩超主要对血流,伪彩主要对灰阶图像。超声新技术:自然组织谐波成像(Nativetissueharmonicimaing,NTHI)多普勒组织成像:(Dopplertissueimaing,DTI)三维超声成像超声造影:可以增强图像的显现力。原理:声波在组织中非线性转播时产生多倍于发射频率(基波)的信号。应用:增强心肌和心内膜显示增强细微病变的显示力增强心腔内声学造影剂回声增强彩色多普勒信号帮助鉴别肝内血管,了解肝内细小血管病变组织多谱勒超声多普勒组织速度图(DTV):是对室壁运动的速度快慢及方向进行彩色编码。将朝向探头方向运动的速度信息编码成暖色。运动速度由低到高依次被编码成红色、橙色和白色;背离探头运动的心肌被编码成冷色,运动速度由低到高依次被编码成蓝色、浅蓝色和白色。无色表示无心肌运动。多普勒组织能量图(DTE):是对心肌组织反射回来的多普勒信号强度(振幅)的显示。以多普勒信号振幅的平方值表示能量。频率曲线,将曲线下的面积进行彩色编码,形成二维彩色心肌组织运动的图像,即能量图。多普勒信号强度与心肌内反射体的数量有关,而与多普勒的频移值大小无关。因此,能量显示方式不受心肌运动的速度和角度的限制DTI能量图:主要用于识别心肌多普勒信号的强度和范围,在心肌造影超声心动图检查时,根据能量信号的强弱,有助于观察心肌造影剂的分布,从而了解