1.对虚数单位i的规定①i2=-1;②可以与实数一起进行四则运算.2.复数z=a+bi(其中a、bR)中a叫z的、b叫z的.实部虚部z为实数、z为纯虚数.b=000ba练习:3.a=0是z=a+bi(a、bR)为纯虚数的条件.必要但不充分知识巩固:特别地,a+bi=0.4.已知x、yR,(1)若(2x-1)+i=y-(3-y)i,则x=、y=;(2)若(3x-4)+(2y+3)i=0,则x=、y=.想一想练一练433-2524==ab0思考1:在几何上,我们用什么来表示实数?想一想?实数的几何意义思考2:类比实数的表示,可以用什么来表示复数?实数可以用数轴上的点来表示.实数数轴上的点(形)(数)一一对应回忆…复数的一般形式?Z=a+bi(a,b∈R)实部!虚部!一个复数由什么唯一确定?4365O21复数与点的对应XY(1)2+5i;(2)-3+2i;(3)2-4i;(4)-3-5i;(5)5;(6)-3i;复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)xyobaZ(a,b)建立了平面直角坐标系来表示复数的平面x轴------实轴y轴------虚轴(数)(形)------复数平面(简称复平面)一一对应z=a+bi复数的几何意义(一)(A)在复平面内,对应于实数的点都在实轴上;(B)在复平面内,对应于纯虚数的点都在虚轴上;(C)在复平面内,实轴上的点所对应的复数都是实数;(D)在复平面内,虚轴上的点所对应的复数都是纯虚数.练习1.辨析:1.下列命题中的假命题是()D2.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的().(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)不充分不必要条件C例1:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围.表示复数的点所在象限的问题复数的实部与虚部所满足的不等式组的问题转化(几何问题)(代数问题)一种重要的数学思想:数形结合思想020622mmmm解:由1223mmm或得)2,1()2,3(m变式一:已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点在直线x-2y+4=0上,求实数m的值.解:∵复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点是(m2+m-6,m2+m-2),∴(m2+m-6)-2(m2+m-2)+4=0,∴m=1或m=-2.练习2、在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上.分别求实数m的取值范围[解析](1)由题意得m2-m-2=0.解得m=2或m=-1.(2)由题意得m2-m-2<0m2-3m+2>0∴-1<m<2m>2或m<1’∴-1<m<1.(3)由已知得m2-m-2=m2-3m+2.∴m=2.复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量OZ一一对应一一对应复数的几何意义(二)xyobaZ(a,b)z=a+bixOz=a+biy复数的绝对值(复数的模)的几何意义:Z(a,b)22ba对应平面向量的模||,即复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离.OZOZ|z|=||OZ小结实数绝对值的几何意义:复数的模其实是实数绝对值概念的推广xOAa|a|=|OA|实数a在数轴上所对应的点A到原点O的距离.aaaa(0)(0)≥xOz=a+biy|z|=|OZ|复数的模复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离.的几何意义:Z(a,b)ab22例2:求下列复数的模:(1)z1=-5i(2)z2=-3+4i(3)z3=5-5i(4)z4=1+mi(m∈R)(5)z5=4a-3ai(a0)答案:(1)|z|=5(2)|z|=5(5)|z|=-5a21(4)mz(3)52z(2)满足|z|=5(z∈C)的z值有几个?这些复数对应的点在复平面上构成怎样的图形?问题探究:(1)满足|z|=5(z∈R)的z值有几个?小结(3)满足3|z|5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?xyO设z=x+yi(x,y∈R)探究(2)满足|z|=5(z∈C)的z值有几个?这些复数对应的点在复平面上构成怎样的图形?55–5–55||22yxz探究(1)满足|z|=5(z∈R)的z值有几个?答案:2个;5和-5答案:无数个;图形:以原点为圆心,半径为5的圆5xyO设z=x+yi(x,y∈R)探究(3)满足3|z|5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–53–3–335322yx25922yx答案:图形:以原点为圆心,半径3至5的圆环内练习3:•求适合下列条件的复数z在复平面上表示的图形.•(1)2≤|z|3;•(2)z=x+yi,x0,y0,且x2+y29.能力提升:若,则复数在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限35ππ44,cossinsincoszi复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量OZ一一对应一一对应小结:我们在本节课里有什么收获?2.复数的几何意义1.复平面3.复数的模及其几何意义22ba|z|=||OZx轴------实轴y轴------虚轴复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离。几何意义:课后作业:课本P106,A组第5题,B组第2题。