内蒙古科技大学钢结构稳定理论第四章压弯构件的弯曲屈曲什么是压弯构件(beam-column)除轴向力外,有横向荷载作用;除轴向力外,有端弯矩作用;偏心轴压;刚架结构中的梁和柱基本都属于压弯构件;内蒙古科技大学钢结构稳定理论内蒙古科技大学钢结构稳定理论本章主要研究的问题压弯构件弹性稳定分析;横向荷载的影响规律;压弯构件的弹塑性极值点失稳问题;平面内M与N的相关公式;内蒙古科技大学钢结构稳定理论压弯构件的荷载-挠度曲线Py-屈服荷载;PE,a-欧拉临界力,小挠度理论;e-一阶弹性分析;d-一阶刚塑性分析;Pp-形成塑性铰时的承载力;b-二阶弹性分析;oAB-二阶弹塑性分析;f,f’-侧向约束不足时发生的弹性、弹塑性弯扭失稳;内蒙古科技大学钢结构稳定理论§4-1有横向荷载作用的压杆的弹性弯曲变形和稳定临界力横向荷载集中荷载均布荷载内蒙古科技大学钢结构稳定理论1)横向集中荷载作用的压弯构件xQPyM2当0<x≤l/2时,平衡方程为:即:EIPkEIQxykyQxPyEIy/)2/(''2/''22其中:所以方程的通解为:)2/(cossinPQxkxBkxAy内蒙古科技大学钢结构稳定理论边界条件为:y(0)=0,y’(l/2)=0利用上述条件可得:则变形曲线的通解为(0<x≤l/2):当l/2<x≤l时,与此对称。)2/sec(20klkPQAB]sin)2/[sec(2kxkxklkPQy当x=l/2时,跨中挠度最大,为:]22sin2[sec2maxklklklkPQy内蒙古科技大学钢结构稳定理论令u=kl/2,并把系数中的k代入,得到:其中:y0=Ql3/(48EI)——跨中集中荷载作用时简支梁的最大挠度;3(tgu-u)/u3——有轴向压力时的最大挠度放大系数。把tgu用幂级数展开:3033max)tg(3]tg[348]tg[2uuuyuuuEIQluuuPQly315/1715/23/753uuuutgu内蒙古科技大学钢结构稳定理论注意到:则跨中最大位移可以表示为:为最大挠度放大系数。说明有轴力P作用后,跨中挠度将有所增大。EPPEIPlEIPlklu/2/222/22EPP/11内蒙古科技大学钢结构稳定理论2)横向均布荷载作用的压弯构件ldxyEIU02)''(2lldxyPqydxV020)'(2在此采用瑞利-里兹法求解。压杆应变能:外力势能:qdxy内蒙古科技大学钢结构稳定理论llldxyPqydxdxyEIVU02002)'(2)''(2总势能:设变形曲线为:(仅取一项,其中δ为跨中最大挠度)则则总势能为:令总势能一阶变分为0,得跨中最大挠度:)sin(lxy)sin()('')cos('2lxlylxlylPqllEI424223420内蒙古科技大学钢结构稳定理论EEPPPPEIqllPlEIql/11/113845)2/()2/(/204234轴力P作用时的放大系数3)结果分析两端铰支受轴心压力的杆件,作用在其上的横向荷载若为对称布置,则此压弯构件的弯曲变形由两部分组成:一部分为不考虑轴心力的弯曲变形;二为放大系数)/1(1EPP内蒙古科技大学钢结构稳定理论与上一章讲的初弯曲、初偏心的影响相类似,δ0相当于初弯曲和初偏心的影响。内蒙古科技大学钢结构稳定理论弹性分析时,当δ→∞时,P=PE,即压弯杆件的弹性承载力为PE。下面给出证明:EEEEPPaPddPPPPP式中,得:代入)(0)1(0(a))1(/112000本节为简支的压弯构件,其它边界条件时,求解方法类似,结论类似。内蒙古科技大学钢结构稳定理论§4-2压弯构件的弯矩放大系数和承载力验算1)跨中弯矩横向集中荷载作用时,跨中最大弯矩为:EPPEIPQlQlPQlM/1148443maxmax内蒙古科技大学钢结构稳定理论EEEEEEEEPPPPMPPPPQlPPPPQlPPlEIPQlPPEIPQlQlM/1/2.01/1/18.014/1182.014/111214/1148402223max弯矩放大系数横向荷载产生的弯矩内蒙古科技大学钢结构稳定理论横向均布荷载作用时,跨中最大弯矩为:EEEEPPPPqlPPEIPlqlPPEIqlPqlPlqllqlM/1103.118/1148518/1138458422222242maxmax内蒙古科技大学钢结构稳定理论EEEPPMPPPPMM/11/1/03.0100max弯矩放大系数横向荷载产生的弯矩可见由于轴向力的作用,跨中不但挠度增大,弯矩也有所增大。这里作用效应的增加称为杆件的二阶效应,即P-δ效应。当横向荷载不同时,弯矩的放大系数也有所不同。内蒙古科技大学钢结构稳定理论2)弹性压弯构件平面内弯曲承载力验算以简支轴压杆,有横向均布荷载作用为例当达到杆件边缘纤维屈服时:采用相关方程的形式:相关方程曲线为:yEfWPPMAP)/1(1)/1(yEyWfPPMAfPMN弹性弹塑性1)/1(EssPPMMPP内蒙古科技大学钢结构稳定理论钢结构设计规范中压弯构件稳定验算公式就是由上式而来,只不过规范公式同时还考虑了其它边界条件、荷载形式和初始缺陷等因素的影响。1)/1(EssPPMMPP内蒙古科技大学钢结构稳定理论§4-3考虑弹塑性影响的压弯构件整体稳定验算1)弹塑性压弯构件的工作性能随着位移的增大,杆件受力最大截面一定会进入弹塑性阶段。本节所要解决的问题就是求解考虑弹塑性时的P-δ曲线。内蒙古科技大学钢结构稳定理论2)几个基本概念Rdθdxyy点处伸长量为ydθ取出微元dx,有几何关系即曲率为单位长度上的转角截面上任一点应变为:dxdRdRdx1ydxydi中和轴以外为拉,以内为压内蒙古科技大学钢结构稳定理论3)数值积分法(压杆挠曲线法)具有初弯曲的压弯构件,假设条件最少,可适用于任意情况。截面上内弯矩:弹塑性阶段弹性阶段-=内''AjjdAyEIyM拉+,压-有正负内蒙古科技大学钢结构稳定理论具体求解过程如下:1.将压杆沿长度分成n段;2.给定压力P;3.假定A端由外荷载产生的转角为θa,由A→B逐段计算;4.计算第一段中点(1/2)处的曲率ρ1/2,过程如下:1)将截面分成m块小单元;2)假定形心处和截面曲率2/12/1内蒙古科技大学钢结构稳定理论3)求解各小块中心点的应变4)由5)判断截面上的轴力是否满足?否则调整重复3)~5)过程。6)判断截面上的弯矩是否等于Eyriii2/12/1iiyiyyiyyiyiiE-miiiAN12/12/1miiiiyAM12/121)812(2/12112/1eAMPM外内蒙古科技大学钢结构稳定理论21)812(2/12112/1eAMPM外其它外荷载引起由P引起y1/2的由来:(挠曲线用泰勒级数展开,x点位移、转角已知,求x+δ点的位移)21211212121010121,211211)1(1)(2)2(21222)2(''2)2()!1()(!)(''2)(')()(Aiiiiiiiiiiiinnnnyyyyxyyyxynxynxyxyxyxy同时有:内蒙古科技大学钢结构稳定理论如果1/2点处的内外弯矩相等不能满足,调整重复3)~6)。2/15.计算第一段末的位移、转角:2/1112/1211121AAv对上式求δ1的一阶导数6.转入对下一段计算,重复第4步2)~第5步,直到最后一段。7.根据最后一段末的边界条件(vB=0)是否满足,否则调整θA重复第4步~第7步。内蒙古科技大学钢结构稳定理论8.完成第1步~第7步后,则得到P-v曲线图中的一点。9.给定下一级P(压力),重复第3步~第8步,可得P-v曲线。10.若到达某一级荷载时,第7步的调整不能完成,即达到了弯曲失稳的极限承载力。11.为了得到P-v曲线的下降段,可以改用给定θA,调整P的办法,完成第4步~第7步。(位移加载方式)Pv内蒙古科技大学钢结构稳定理论4)简化计算方法(耶硕克Jezek法)基本假定:a、材料理想弹塑性。b、杆件两端简支,构件变形曲线为正弦半波曲线,即:c、只考虑构件中央截面的内外力平衡。zlvvmsinPPzyum内蒙古科技大学钢结构稳定理论PPzyum计算步骤:a、平衡方程:其中Mi为内弯矩,与杆件轴向力P和曲率ρ有关:b、由基本假设第二条得到:iqMPuM由横向荷载产生某点的挠度内弯矩),(PfMizlulumsin22内蒙古科技大学钢结构稳定理论c、由基本假设第三条,平衡方程可以表达为:d、P的最大值可由得到,即为弯矩作用平面内的稳定承载力。),(mmquPfPuM0mdudP22lEIPexu内蒙古科技大学钢结构稳定理论5)等效弯矩的概念:考虑受不等端弯矩作用的压弯构件平衡方程:通解为:EIMxlEIMMykyxlMMMPyyEIABABAA222cossinEIkMxkEIlMMkxBkxAyABA内蒙古科技大学钢结构稳定理论利用边界条件:可得通解为:BMMlxyx00时,时,产生同号曲率,弯矩为正;产生异号曲率,弯矩为负;大小和位置。可以确定出极值弯矩的即:通过。有极值时,0'''0cossinsincosmax2222yMMdxdMyEIMEIkMxlEIkMMkxEIkMkxklEIkMklMyABAABA内蒙古科技大学钢结构稳定理论通过上述办法可以求得各种端弯矩作用下杆件内部截面上的最大弯矩。但这种方法不适合于设计人员使用。故提出等效弯矩的概念。等效弯矩Meq:将求出的两端弯矩不等的构件中的最大弯矩,等于两端弯矩相等时的最大弯矩,此两端相等的弯矩成为等效弯矩。等效弯矩系数:两端相等的弯矩与两端不等弯矩中大值之比1。通过等效弯矩以端弯矩相等的情况代替端弯矩不等的情况,以适用于任何情况。内蒙古科技大学钢结构稳定理论PPM1M2M1M2MmaxM1M2MmaxPPMeqMeqMeqMeqMmax任意端弯矩作用的情况,无法统一求解。端弯矩相等时,求解简单,通过等效弯矩系数,将各种情况统一化。内蒙古科技大学钢结构稳定理论§4-4考虑有限变形的实用方法1)基本假定:钢材理想弹塑性杆轴为正弦半波变形曲线平截面假定有限小变形,(1/4h~1/8h)部分发展塑性用等效初始偏心考虑缺陷的影响内蒙古科技大学钢结构稳定理论2)实用方法介绍考虑初偏心e0的杆,其相关方程为:其中:1)/1(0ExssNNMNeMNNyxsysxExfWMAfNEAlEIN12222NNMMe0内蒙古科技大学钢结构稳定理论考虑截面塑性发展(1/4h~1/8h),用Mp=γxMs=γxW1xfy代替Ms,(γx为塑性发展系数),得到:以下变换的目的是把初始偏心e0代换掉。当M=0时,相当于有初偏心e0的轴压杆,设此时:把上式代入相关公式得:1)/1(10ExyxxsNNfWNeMNNyxxAfNNAWNNNNNNexxExxxExxs10))((