AbsolutelycontinuousspectrumofperturbedStarkoperatorsAlexanderKiselevMathematicalSciencesResearchInstitute1000CentennialDriveBerkeleyCA94720AbstractWeprovenewresultsonthestabilityoftheabsolutelycontinuousspectrumforperturbedStarkoperatorswithdecayingorsatisfyingcertainsmoothnessassumptionperturbation.Weshowthattheab-solutelycontinuousspectrumoftheStarkoperatorisstableiftheperturbingpotentialdecaysattherate(1+x) 13 orifitiscontinu-ouslydi erentiablewithderivativefromtheH olderspaceC (R);withany 0:0.IntroductionInthispaper,westudythestabilityoftheabsolutelycontinuousspec-trumofone-dimensionalStarkoperatorsundervariousclassesofperturba-tions.StarkSchr odingeroperatorsdescribebehaviorofthechargedparticleintheconstantelectric eld.Theabsolutelycontinuousspectrumisaman-ifestationofthefactthattheparticledescribedbytheoperatorpropagatestoin nityataratherfastrate(see,e.g.[1],[11]).Itisthereforeinterestingtodescribetheclassesofperturbationswhichpreservetheabsolutelycon-tinuousspectrumoftheStarkoperators.Inthe rstpartofthiswork,westudyperturbationsofStarkoperatorsbydecayingpotetnials.ThispartisinspiredbytherecentworkofNabokoandPushnitski[13].ThegeneralpicturethatweproveisverysimilartothecaseofperturbationsoffreeSchr odingeroperators[8].Inaccordancewithphysicalintuition,however,theabsolutelycontinuousspectrumisstableunderstrongerperturbationsthaninthefreecase.Ifinthefreecasetheshortrangepotentialspreserv-ingpurelyabsolutelycontinuousspectrumofthefreeoperatoraregivenbycondition(onthepowerscale)jq(x)j C(1+jxj) 1 ;intheStarkopera-torcasethecorrespondingconditionreadsjq(x)j C(1+jxj) 12 :If isallowedtobezerointheabovebounds,imbeddedeigenvaluesmayoccurinbothcases(see,e.g.[13],[14]).Moreover,inbothcasesifweallowpotential1todecayslowerbyanarbitraryfunctiongrowingtoin nity,veryrichsingu-larspectrum,suchasadensesetofeigenvalues,mayoccur(see[12]forthefreecaseandeNaPufortheStarkcaseforpreciseformulationandproofsoftheseresults).The rstpartofthisworkdrawsthepaprallelfurther,show-ingthattheabsolutelycontinuousspectrumofStarkoperatorsispreservedunderperturbationssatisfyingjq(x)j C(1+jxj) 13 ;inparticularevenintheregimeswhereadensesetofeignevaluesoccurs;henceinsuchcasestheseeigenvaluesaregenuinelyimbedded.Similarresultsforthefreecasewereprovenin[8],[9].Ourmainstrategyoftheproofhereissimilartothatin[8]and[9]:westudytheasymptoticsofthegeneralizedeigenfunctionsandthenapplyGilbert-Pearsontheory[6]toderivespectralconsequences.WhilethemainnewtoolweintroduceinourtreatmentofStarkoperatorsisthesameasinthefreecase,namelythea.e.convergenceoftheFourier-typeintegraloperators,therearesomemajordi erences.Firstofall,thespectralparameterentersthe nalequationsthatwestudyinadi erentwayandthismakesanalysismorecomplicated.Secondly,weemployadi erentmethodtoanalyzetheasymptotics.InsteadofHarris-LutzasymptoticmethodwestudyappropriatePr ufertransformvariables,simplifyingtheoverallconsideration.Inthesecondpartoftheworkwediscussperturbationsbypotentialshavingsomeadditionalsmoothnessproperties,butwithoutdecay.ItturnsoutthatforStarkoperatorsthee ectsofdecayorofadditionalsmoothnessofpotentialonthespectralpropertiesaresomewhatsimilar.ItwasknownforalongtimethatifapotentialperturbingStarkoperatorhastwoboundedderivativesthespectrumremainspurelyabsolutelycontinuous(actually,cer-taingrowthofderivativesisalsoallowed,seeSection3fordetailsorWalter[19]fortheoriginalresult).WenotethattheresultssimilartoWalter’sonthepreservationonabsolutelycontinuousspectrumwerealsoobtainedin[3]byapplyingdi erenttypeoftechnique(Mourremethodinsteadofstudyingasymptoticsofsolutions).Ontheotherhand,iftheperturbingpotentialisasequenceofderivativesof functionsinintegerpointsonRwithcertaincouplings,thespectrummayturnpurepoint[2],[4].Insomesense,the 0interactionisthemostsingularandleast\di erentiableamongallavailablenaturalperturbationsofone-dimensionalSchr odingeroperators[10].Hencewehaveverydi erentspectralpropertiesontheveryoppositesidesofthesmoothnessscale.Thisworkclosesapartofthegap.Weimprovethewell-knownresultsofWalter[19]concerningtheminimalsmoothnessrequiredforthepreservationoftheabsolutelycontinuousspectrumandshowthatinfact2existenceandminimalsmoothnessofthe rstderivativeissu cienttoimplyabsolutecontinuityofthespectrum.1.Decayingperturbations.Consideraself-adjointoperatorHqde nedbythedi erentialexpressionHqu= u00 xu+q(x)uontheL2( 1;1):Letusintroducesomenotation.Forthefunctionf2L2wedenoteby fitsFouriertransform: f(k)=L2 limN!1NZ Nexp(ikx)f(x)dx:ForlocallyintegrablefunctiongwedenotebyM+gthefunctionM+g(x)=sup1h012hhZ0jg(x+t)+g(x t)jdt:WedenotebyM+fthesetwhereM+fis nite.Bythegeneralresultsonthemaximalfunctions(see,e.g.[15]),itiseasytoconcludethatthecomple-mentofthesetM+hasLebesguemeasurezero.Wewillprovethefollowingtheorem:Theorem1.1Supposethatthepotentialq(x)satis esjq(x)j C(1+x) 13 ; 0:Thentheabsolutelycontinuousspectrumofmultiplicityone llsthewholerealaxis.Imbeddedsingularspectrummayoccur,butonlyonthecom-plementofthesetS=M+ expix3 iZx30q(ct23)ct 23dt!q(cx2)x16!!;wherec=(32)23:Wewillprov