华师大版数学九年级上册直角三角形的应用第二课时导入当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度lhhααll与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?学习目标123理解坡度、坡角的概念会运用解直角三角形有关知识解决与坡度坡角有关的实际问题注意数形结合的数学思想和方法(难点)(重点)αlhi=h:l1、坡角坡面与水平面的夹角叫做坡角,记作α。2、坡度(或坡比)坡度通常写成1∶m的形式,如i=1∶6.如图所示,坡面的铅垂高度(h)和水平长度(l)的比叫做坡面的坡度(或坡比),记作i,即i=——h3、坡度与坡角的关系tanilh坡度等于坡角的正切值坡面水平面l显然,坡度越大,坡角就越大,坡面就越陡.例1.水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求:坝底AD与斜坡AB的长度。(精确到0.1m)EFADBCi=1:2.52363:1iα例1.水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求:坝底AD与斜坡AB的长度。(精确到0.1m)EFADBCi=1:2.52363:1iα分析:(1)由坡度i会想到产生铅垂高度,即分别过点B、C作AD的垂线。(2)垂线BE、CF将梯形分割成Rt△ABE,Rt△CFD和矩形BEFC,则AD=AE+EF+FD,EF=BC=6m,AE、DF可结合坡度,通过解Rt△ABE和Rt△CDF求出。(3)斜坡AB的长度以及斜坡CD的坡角的问题实质上就是解Rt△ABE和Rt△CDF。1、斜坡的坡度是,则坡角α=______度。2、斜坡的坡角是450,则坡度是_______。3、斜坡长是12米,坡高6米,则坡度是_______。3:1αLh4、小明沿着坡角为20°的斜坡向上前进80m,则他上升的高度是().80.cos20Am80.sin20Bm.80sin20Cm.80cos20Dm5、如图是一个拦水大坝的横断面图,AD∥BC,(1)如果斜坡AB=10m,大坝高为8m,则斜坡AB的坡度____.ABi(2)如果坡度,则坡角1:3ABi____.B(3)如果坡度,则大坝高度为___.1:2,8ABiABmABCDE一段路基的横断面是梯形,高为4米,上底的宽是12米,路基的坡面与地面的倾角分别是45°和30°,求路基下底的宽.(精确到0.1米)45°30°4米12米ABCEFD414.12732.13效果检测