aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0复习:一、函数单调性与导数关系如果在某个区间内恒有,则为常数.0)(xf)(xf设函数y=f(x)在某个区间内可导,f(x)为增函数f(x)为减函数二、函数的极值定义设函数f(x)在点x0附近有定义,•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);oxyoxy0x0x◆函数的极大值与极小值统称为极值.使函数取得极值的点x0称为极值点xyo0x左正右负极大左负右正极小左右同号无极值(2)由负变正,那么是极小值点;0x()fx(3)不变号,那么不是极值点。0x()fx(1)由正变负,那么是极大值点;()fx0x2.极值的判定yxo0xxoy0xxoyax1by=f(x)x2x3x4x5x6观察下列图形,你能找出函数的极值吗?135(),(),()fxfxfx观察图象,我们发现,是函数y=f(x)的极小值,是函数y=f(x)的极大值。246(),(),()fxfxfx•求解函数极值的一般步骤:•(1)确定函数的定义域•(2)求函数的导数f’(x)•(3)求方程f’(x)=0的根•(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格•(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?新课引入极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。知识回顾一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:1.最大值:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值2.最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值观察下列图形,你能找出函数的最值吗?xoyax1by=f(x)x2x3x4x5x6xoyax1by=f(x)x2x3x4x5x6),(bax][bax,在开区间内的连续函数不一定有最大值与最小值.在闭区间上的连续函数必有最大值与最小值因此:该函数没有最大值。f(x)max=f(a),f(x)min=f(x3)xoyax1by=f(x)x2x3x4x5x6如何求出函数在[a,b]上的最值?一般的如果在区间,[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。观察右边一个定义在区间[a,b]上的函数y=f(x)的图象:发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?xX2oaX3bx1yy=f(x)(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);新授课注意:1.在定义域内,最值唯一;极值不唯一2.最大值一定比最小值大.※典型例题'2'31233,30,22(2)22(2)10(3)15,(3)3()6123310.fxxxfxxxfffffxxx解:令解得:或又,,所以函数在,上的最大值为22,最小值为1、求出所有导数为0的点;2、计算;3、比较确定最值。例1、3()61233fxxx求函数在,上的最大值与最小值.1、解:24yx当变化时,的变化情况如下表:,yy例2、求函数在区间上的最大值与最小值。31443yxx[0,3]令,解得0y22或xxx又由于(0)4,(3)1ff(舍去)2-+0(0,2)(2,3)x()fx()fx03↗↘43极小值41应用函数在区间上最大值为,最小值为43[0,3]4例3:已知函数(1)求的单调减区间(2)若在区间上的最大值为,求该区间上的最小值32()39,fxxxxa()fx()fx[2,2]20所以函数的单调减区间为(,1)(3,),解:2(1)()369fxxx()0令fx23690即xx13解得:或xx应用2(2)()369fxxx令解得()0fx13或xx当变化时,的变化情况如下表:,yyx(舍去)↘--↗x()fx()fx(2,1)1(1,2)205a2极小值2a22a2220a2即a最小值为527所以函数的最大值为,最小值为(2)22fa5a※拓展提高1、我们知道,如果在闭区间【a,b】上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把闭区间【a,b】换成开区间(a,b)是否一定有最值呢?如下图:不一定2、函数f(x)有一个极值点时,极值点必定是最值点。3、如果函数f(x)在开区间(a,b)上只有一个极值点,那么这个极值点必定是最值点。有两个极值点时,函数有无最值情况不定。21x402fxx3讨论函数()=4x在,的最值情况。※动手试试补充练习:1.下列说法正确的是()(A)函数的极大值就是函数的最大值(B)函数的极小值就是函数的最小值(C)函数的最值一定是极值(D)若函数的最值在区间内部取得,则一定是极值.2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则()fx()(A)等于0(B)大于0(C)小于0(D)以上都有可能3.函数y=432111432xxx,在[-1,1]上的最小值为()(A)0(B)-2(C)-1(D)1213ADA4、函数y=x3-3x2,在[-2,4]上的最大值为()A.-4B.0C.16D.20C解:2(1)()33fxx令解得()0fx11或xx所以函数的极大值为,极小值为1、已知函数(1)求的极值(2)当在什么范围内取值时,曲线与轴总有交点3()3,[2,3]fxxxax()fxxa()yfx2a2a当变化时,的变化情况如下表:(),()fxfxx↘--+↗↘x()fx()fx(2,1)1(1,1)1(1,3)0--2a2a0极小值极大值练习218即a2a18a曲线与轴总有交点x()yfx20180aa由(1)可知,函数在区间上的极大值为,极小值为,又因,2a(2)2fa(3)18fa[2,3]2a(2)所以函数的最大值为,最小值为1、求函数f(x)=x2-4x+6在区间[1,5]内的最大值和最小值法一、将二次函数f(x)=x2-4x+6配方,利用二次函数单调性处理选做题:1.求函数f(x)=x2-4x+6在区间[1,5]内的极值与最值故函数f(x)在区间[1,5]内的极小值为3,最大值为11,最小值为2解法二、f’(x)=2x-4令f’(x)=0,即2x-4=0,得x=2x1(1,2)2(2,5)5y,0y-+3112应用(2009年天津(文)21T)处的切线的斜率;设函数其中,131223Rxxmxxxf.0m(1)当时,求曲线在点1mxfy1,1f(2)求函数的单调区间与极值。xf答:(1)斜率为1;.1,1,1,1内是增函数减函数,在内是,在mmmmxf;313223mmxf极小313223mmxf极大(2)一.是利用函数性质二.是利用不等式三.是利用导数求函数最值的一般方法小结: