数学电子教案:几何综合问题专题几何在初中数学中占有相当的比重,在全国各地的中考数学试卷中图形与几何的解答题占有20%到30%的比重。主要是利用直线型和圆中的一些基本性质,借助于图形变换(平移变换、旋转变换、轴对称变换、相似变换)进行线段和角的相等的证明、距离的测量与计算、面积的确定、线路的确定、方案的设计等等,主要考查学生的观察能力、空间想象能力、动手操作能力以及所学几何基础知识的灵活运用能力.知识的应用在现实的生产实践和生活中极其普遍,几何知识的考查也从单纯的几何证明、计算向几何应用方面转变,且题型多种多样.解题一般先从实际的问题中抽象出几何图形的模型,将实际问题转化为数学问题,然后把已知量和所求的量转化在几何图形中,再根据几何图形的性质,用代数的方法进行求解,最后检验做答.:(2013山东烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.【解题思路】(1)易证明AE∥BF,利用全等易证明QE=QF;(2)结合图形可猜想QE=QF.如图延长FQ交AE于点D,通过全等三角形,及直角三角形斜边中线定理即可证明猜想成立.(2)QE=QF.证明:延长FQ交AE于点D.∵AE∥BF,∴∠1=∠2.∵∠3=∠4,AQ=BQ,∴△AQD≌△BQF.∴QD=QF.∵AE⊥CP,∴QE为斜边FD中线,∴QE=QF.(3)(2)中结论仍然成立.理由:延长EQ、FB交于点D,∵AE∥BF,∴∠1=∠D,∵∠2=∠3,AQ=BQ,∴△AQE≌△BQD.∴QE=QD.∵BF⊥CP,∴FQ为斜边DE中线.∴QE=QF.例2:(2013广东梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN,在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在.求出它的最小值;若不存在,请说明理由.【解题思路】探究一:(1)如图甲,过点A作AG⊥BC,垂足为G.当点P运动到∠CFB的角平分线上时,要求AP,在Rt△AGP中,只需先求出AG与GP.(2)如图乙,以A点为圆心,CF长为半径作圆弧,与BC有两个交点,知∠PAB可分两种情况.探究二:连接AD.易证△ADM≌△CDN,可证明CN=AM,所以AM+AN的和为定值,我们只需求MN的最小值即可.:(2013浙江湖州)如图,已知点A是第一象限内横坐标为23的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是_____________.【思维模式】初中数学中点的运动轨迹问题,通常有两种可能,一是轨迹是线段,此时只要求出两端点的坐标就可求得路径长;二是轨迹是圆弧,此时先去定圆弧所在圆的圆心、半径,再确定圆心角就可求得路径长.现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐,可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式,在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防,生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方向;我们习惯了飞翔,却成了无脚的鸟。年轻时我们并不了解自己,不知道自己需要什么。不知道什么才是自己最想要的,什么才是最适合自己的,自己又是怎么样的一个人。”时光叠加,沧桑有痕,终究懂得,漫漫人生路,得失爱恨别离,不过是生命的常态。原来,人生最曼妙的风景,就是那颗没被俗世河流污染的初心。大千世界,有很多的东西可以去热爱,或许一株风中摇曳的小草,一朵迎风招展的小花,一条弯弯曲曲的小河,都足够让我们触摸迷失的初心。紫陌红尘,芸芸众生,皆是过客。若时光允许,我愿意一生柔软,爱了樱桃,爱芭蕉,静守于轮回的渡口,揣一颗云水禅心,将寂寞坐断,将孤独守成一帧最美的山水画卷。一直渴盼着,与心悦的人相守于古朴的小院,守着老旧的光阴,只闻花香,不谈悲喜,读书喝茶,不争朝夕。阳光暖一点,再暖一点,日子慢一些,再慢一些,从容而优雅地老去。浮生荡荡,阳春白雪,触目横斜千万朵,赏心不过两三枝;任凭弱水三千,只取一瓢饮。有梦的季节,有爱的润泽,走过的日子,都会成为笔尖温润如玉的诗篇。相信越是走到最后,剩下的唯有一颗向真向善向美的初心。似水流年,如花美眷,春潮带雨晚来急,野渡无人舟自横朝花夕拾,当回望过往,你是此生无憾,还是满心懊悔呢?随着芳华的流逝,我们终究会明白:任何的财富都比不上精神上的愉悦,任何的快感都不及对初心的执着。愿你不趋炎附势,不阿谀奉迎,不苟且偷生,不虚掷有限的年华,活出属于自己的风采,活在每一个当下,不忘初心,不负今生曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消得人憔悴”,此第二境界也;“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”,此第三境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又变了,在省城长沙,店面也由摊点变成了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的……”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持的精神,或许只是一瞬间的坚持我们就挖掘了自身潜能,造就了一个全新的自己。有时做一件事就像是跑400米,当你已经跑过300米,面对着那已出现在眼前的终点线时,你实际上并不需要多想,要做的就是再加把劲,冲过去,得到真正属于自己的成绩。坚持是一种信念,让你有不怕困难、奋勇向前的勇气;让你有乘风破浪、直击沧海的豪情;让你有不达目的誓不罢休的毅力。所以我们既然选择了,就一定要走下去,不要在有限的时间里,蹉跎无限的光阴。只有如此,到暮年之时,细细回想起来,才不会有年华虚度、韶华易逝的感慨。