1.3.3函数的最大(小)值与导数求解函数极值的一般步骤:(1)确定函数的定义域(2)求函数的导数f’(x)(3)求方程f’(x)=0的根(4)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(5)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题函数在什么条件下取得最值呢?新课引入极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。3学习目标:⒈理解函数的最大值和最小值的概念;⒉掌握用导数求函数的极值及最值的方法和步骤教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.2020/3/14知识回顾一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:1.最大值(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值2020/3/152.最小值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≥M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最小值2020/3/16阅读课本判断下列命题的真假:1.函数在其定义域上的最大值与最小值至多各有一个;2、最大值一定是极大值;3、最大值一定大于极小值;xy0abx1x2x3x4f(a)f(x3)f(b)f(x1)f(x2)gg讲授新课2020/3/17观察下列函数,作图观察函数最值情况:(1)f(x)=|x|(-2x≤1)1)x(0x1xf(x)(2)(3)f(x)=X(0≤x2)0(x=2)-2120122020/3/1归纳结论:(1)函数f(x)的图像若在开区间(a,b)上是连续不断的曲线,则函数f(x)在(a,b)上不一定有最大值或最小值;函数在半开半闭区间上的最值亦是如此(2)函数f(x)若在闭区间[a,b]上有定义,但有间断点,则函数f(x)也不一定有最大值或最小值总结:一般地,如果在区间[a,b]上函数f(x)的图像是一条连续不断的曲线,那么它必有最大值和最小值。2020/3/19观察右边一个定义在区间[a,b]上的函数y=f(x)的图象:发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______。f(x1)、f(x3)f(x2)f(b)f(x3)问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?xX2oaX3bx1yy=f(x)(2)将y=f(x)的各极值与f(a)、f(b)(端点处)比较,其中最大的一个为最大值,最小的一个最小值.求f(x)在闭区间[a,b]上的最值的步骤:(1)求f(x)在区间(a,b)内极值(极大值或极小值);新授课例:求函数y=x4-2x2+5在区间[-2,2]上的最大值与最小值.解:.443xxy令,解得x=-1,0,1.0y当x变化时,的变化情况如下表:yy,x-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y’-0+0-0+y13↘4↗5↘4↗13从上表可知,最大值是13,最小值是4.求闭区间上函数的最大值和最小值※典型例题322()2622371a2()22fxxxafx例题:已知函数在,上有最小值求实数的值;求在,上的最大值。3,3补充练习:1.下列说法正确的是()(A)函数的极大值就是函数的最大值(B)函数的极小值就是函数的最小值(C)函数的最值一定是极值(D)若函数的最值在区间内部取得,则一定是极值.2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则()fx()(A)等于0(B)大于0(C)小于0(D)以上都有可能3.函数y=432111432xxx,在[-1,1]上的最小值为()(A)0(B)-2(C)-1(D)1213ADA4、函数y=x3-3x2,在[-2,4]上的最大值为()(A)-4(B)0(C)16(D)20C知识要点:.函数的最大与最小值⑴设y=f(x)是定义在区间[a,b]上的函数,y=f(x)在(a,b)内有导数,求函数y=f(x)在区间[a,b]上的最大最小值,可分两步进行:①求y=f(x)在区间(a,b)内的极值;②将y=f(x)在各极值点的极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值。⑵若函数f(x)在区间[a,b]上单调递增(减),则f(a)为最小(大)值,f(b)为最大(小)值。小结2020/3/116