高等代数北大版4-2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

三、数量乘法一、加法二、乘法四、转置§4.2矩阵的运算1.定义()()ijsnijijsnCcab设则矩阵(),(),ijsnijsnAaBb称为矩阵A与B的和,记作.即CAB一、加法111112121121212222221122nnnnsssssnsnababababababABababab§4.2矩阵的运算说明例如12345698186309153121826334059619583112.98644741113只有当两个矩阵是同型矩阵时,才能进行加法运算.§4.2矩阵的运算(1)交换律ABBA(2)结合律()()ABCABC(3)0AA(4)()0AA定义().ABAB2.性质3.减法§4.2矩阵的运算ijsnka称为矩阵A与数k的数量乘积.记作:.kA二、数量乘法1.定义设则矩阵,,ijsnAakP即111212122212.nnsssnkakakakakakakAkakaka§4.2矩阵的运算2.性质(1)()();AA(2)();AAA(3)();ABAB注:矩阵的加法与数量乘法合起来,统称为矩阵的线性运算.(4)1;AA§4.2矩阵的运算(6)若A为n级方阵,;nkAkA(7)()();kAkEAAkE(数量矩阵与任意矩阵可交换)(8)();kElEklE(9)()()().kElEklE(数量矩阵加法与乘法可归结为数的加法与乘法)§4.2矩阵的运算111nijijinnjikkjkcababab1,2,,,1,2,,isjm设则矩阵(),(),ijsnijnmAaBbsn其中(),ijsmCc称为与的积,记为.ABCAB1.定义三、乘法§4.2矩阵的运算注:两矩阵能相乘的条件:的行的列等于BAABlmnlCnm相等ijc列的第行的第jBiA§4.2矩阵的运算①乘积有意义要求A的列数=的行数.ABB②乘积中第行第列的元素由的第行ABAjii乘的第列相应元素相加得到.Bj注意106861985123321如不存在.§4.2矩阵的运算1111111nnssnnsaxaxbaxaxb(1)例1线性方程组1122(),,ijsnnxbxbAaBxbsX==令则(1)可看成矩阵方程.AXB§4.2矩阵的运算例2222263422142C221632816设415003112101A121113121430B例3?§4.2矩阵的运算故121113121430415003112101ABC.解,43ijaA,34ijbB.33ijcC567102621710§4.2矩阵的运算而无意义.BA4101031113,2102201134AB例2.921,9911AB1632,816AB2424,1236AB例3.00,00BA.ABBA§4.2矩阵的运算例4.12,1,2,33AB112321,2,3246,3369AB11,2,323BA(112233)(14)14§4.2矩阵的运算数baabBAAB数000baab或OABOBOA或2、矩阵乘法的运算规律矩阵矩阵§4.2矩阵的运算例:设1111A1111B则,0000AB,2222BABAABOABOBOA或故§4.2矩阵的运算注意③未必.YXYAXA=若,称A与B可交换.ABBA①一般地,.ABBA即且时,有可能.0A0B0AB②未必有或.000ABAB§4.2矩阵的运算2.矩阵乘法的运算规律(1)()()ABCABC(2)()ABCABAC(3)snnssnsnAEEAA()BCABACA(5)1111nnnnabababab(结合律)(分配律)(4)00,00AA§4.2矩阵的运算证:1)设(),(),()ijsnjknmklmrAaBbCc令(),(),iksmjlnrVABvWBCw其中11,.nmikijjkjljkkljkvabwbc的第i行第l列元素为VC11()mnijjkklkjabc1mikklkvc11mnijjkklkjabc的第i行第l列元素为AW1nijjljaw11()nmijjkkljkabc11nmijjkkljkabc11.mnijjkklkjabc结合律得证.§4.2矩阵的运算设为级方阵.定义An称为的次幂.kAkA11,,kkAAAAA3.矩阵的方幂定义,kkAAAA即,个§4.2矩阵的运算(3)一般地,();kkkABAB(2)(),,klklAAklZ(1),,klklAAAklZ性质().kkkABABABBAkZ11(4),.0000kkknnaakZaa§4.2矩阵的运算解:0010010010012A222210200例5.设求1001,00A.kA00100100201222223AAA32323003033§4.2矩阵的运算由此归纳出200021121kkkkkAkkkkkkk用数学归纳法证明之.当时,显然成立.2k假设时成立,则时,nk1nk§4.2矩阵的运算,001001000211211nnnnnnnnnnnnAAA故对于任意都有k.00021121kkkkkkkkkkkA,00102111111nnnnnnnnnn§4.2矩阵的运算设的转置矩阵是指矩阵,ijsnAaA112111222212ssnnsnaaaaaaaaa记作或.ATA四、转置1.定义§4.2矩阵的运算2.性质(1)();AA(2)();ABAB(3)();ABBA(4)();kAkA(5)若为方阵,则;AAA();ABAB(6)()().RARA§4.2矩阵的运算(3)证:设111211112121222212221212,,smsmsssnnnnmaaabbbaaabbbABaaabbb中的元素为(,)ABji1,njkkikab从而中的元素为()(,)ABij中的元素为(,)BAij1,njkkikab又的第i行元素为12,,,,iinibbbB的第j列元素为A12,,,,jjjnaaa1nkijkkba1.njkkikab§4.2矩阵的运算设n级方阵,ijAa(1)若满足即A,AA3.对称矩阵反对称矩阵定义则称A为对称矩阵;,,1,2,,jiijaaijn(2)若满足即A,AA则称A为反对称矩阵.,,1,2,,jiijaaijn111211222212nnnnnnaaaaaaaaa12112212000nnnnaaaaaa§4.2矩阵的运算性质(2)对称,对称;kPkAA反对称,反对称.AkPkA(1)对称对称;,AB,ABAB反对称反对称.,AB,ABAB(3)奇数级反对称矩阵的行列式等于零.AA(1),nAAAA为奇数时,nAA0.A§4.2矩阵的运算i)对称,积对称吗?,ABAB想一想ii)反对称,积反对称吗?,ABAB皆为n级对称矩阵,证明:,AB例7已知皆为n级对称矩阵,,AB.ABBAAB对称证:若AB对称,则有AB()ABBA.BA反过来,若AB=BA,则有()ABBABA.AB所以AB对称.§4.2矩阵的运算例8设A为n级实对称矩阵,且,证明:20A0.A证:设,ijnnAa,AA1112111211221222122221212nsnsnnnnnnsnaaaaaaaaaaaaAAAaaaaaa21121**nkknnkkaa0.§4.2矩阵的运算210,1,2,,.nikkain0,1,2,,,1,2,,ikainkn0.A,,1,2,,ikaikn又皆为实数§4.2矩阵的运算练习1设列矩阵满足12,,,nXxxx1,XXE为n单位矩阵,2,HEXX证明:.HHEH是对称矩阵,且2已知111,2,3,1,,,,23A.nA求§4.2矩阵的运算1证:2HEXX2EXX2,EXXH.是对称矩阵H2HHH22EXX44EXXXXXX44EXXXXXX44EXXXX.E§4.2矩阵的运算2解:1112322133312A()nnA1()n()()()1111,,22333,13nnA13n13nA1111232321.33312n§4.2矩阵的运算附:共轭矩阵定义当为复矩阵时,用表示的共轭复数,记,称为的共轭矩阵.ijaAijaijaijaAAA(2);AA(3).ABAB运算性质(1);ABAB(设为复矩阵,为复数)BA,

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功