层次分析法综述摘要:层次分析法(AHP法)是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。关键字:层次分析法权重一致性检验1、层次分析法的概述1.1层次分析法产生的背景定量分析方法对于社会科学的发展产生了巨大的促进作用,因此越来越受到重视,特别是最优化模型,曾一度在决策问题中得到非常广泛应用。但在应用过程中,也出现了一些问题,主要体现在以下几个方面:第一、社会问题的复杂性决定了难以构造合适的模型。即使构造出数学模型,有时也难以准确说明问题或者难以执行。第二、决策问题带有相当多的主观性,而这很难体现在最优化模型中。第三、庞大的模型成本太大,难以理解。由于存在上述问题,人们重新思考数量方法在社会科学中的作用,特别是对于决策问题,如何既考虑数学分析的精确性,又考虑人类决策思维过程及思维规律,即定性与定量相结合,正是在这种背景下,产生了层次分析法。1.2层次分析法的发展层次分析法(TheAnalyticHierarchyPricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。AHP于1982年传入我国。在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。2、层次分析法的特点2.1优点:1.系统性的分析方法层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。2.简洁实用的决策方法这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。3.所需定量数据信息较少层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。这种思想能处理许多用传统的最优化技术无法着手的实际问题。2.2缺点:1.不能为决策提供新方案层次分析法的作用是从备选方案中选择较优者。这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。但显然,层次分析法还没能做到这点。2.定量数据较少,定性成分多,不易令人信服在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩,不能令人信服。3.指标过多时数据统计量大,且权重难以确定当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。那么我们就需要对许多的指标进行两两比较的工作。由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。4.特征值和特征向量的精确求法比较复杂在求判断矩阵的特征值和特征向量时,所用的方法和我们上学期多元统计所用的方法是一样的。在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。第一种就是和法,第二种是幂法,还有一种常用方法是根法。3、层次分析法的基本步骤步骤一:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;步骤二:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;步骤三:计算各层次对于系统的总排序权重,并进行排序。最后,得到各方案对于总目标的总排序。一、构造判断矩阵层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。如对某一准则,对其下的各个方案进行两两对比,并按其重要性程度评定等级。记为第X和第Y因素的重要性之比,表3列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的矩阵称作判断矩阵。判断矩阵A具有如下性质,且/(=1,2,…)即A为正互反矩阵比例标度表因素比因素量化值同等重要1稍微重要3较强重要5强烈重要7极端重要9两相邻判断的中间值2、4、6、8二、计算权重向量为了从判断矩阵中提炼出有用信息,达到对事物的规律性的认识,为决策提供出科学依据,就需要计算判断矩阵的权重向量。定义:判断矩阵A,如对X…Y,成立,则A称满足一致性,并A称为一致性矩阵。一致性矩阵A具有下列简单性质:1.存在唯一的非零特征值,其对应的特征向量归一化后,叫做权重向量;2.列向量之和经规范化后的向量,就是权重向量;3.任一列向量经规范化后的向量,就是权重向量;4.对全部列向量求每一分量的几何平均,再规范化后的向量,就是权重向量。因此,对于构造出的判断矩阵,就可以求出最大特征值所对应的特征向量,然后归一化后作为权值。根据上述定理中的性质2和性质4即得到判断矩阵满足一致性的条件下求取权值的方法,分别称为和法和根法。而当判断矩阵不满足一致性时,用和法和根法计算权重向量则很不精确。三、一致性检验当判断矩阵的阶数时,通常难于构造出满足一致性的矩阵来。但判断矩阵偏离一致性条件又应有一个度,为此,必须对判断矩阵是否可接受进行鉴别,这就是一致性检验的内涵。定理:设CI是正互反矩阵A的最大特征值则必有RI,其中等式当且仅当CI为一致性矩阵时成立。应用上面的定理,则可以根据CI是否成立来检验矩阵的一致性,如果CI比RI大得越多,则A的非一致性程度就越严重。因此,定义一致性指标:1.CI越小,说明一致性越大。考虑到一致性的偏离可能是由于随机原因造成的,因此在检验判断矩阵是否具有满意的一致性时,还需将CI与平均随机一致性指标RI进行比较,得出检验系数CR;2.如果CI越大,则认为该判断矩阵通过一致性检验,否则就不具有满意一致性。其中,随机一致性指标RI和判断矩阵的阶数有关,一般情况下,矩阵阶数越大,则出现一致性随机偏离的可能性也越大,其对应关系如下表:平均随机一致性指标RI标准值表矩阵阶数12345678910RI000.580.901.121.241.321.411.451.494、结论AHP方法经过几十年的发展,许多学者针对AHP的缺点进行了改进和完善,形成了一些新理论和新方法,像群组决策、模糊决策和反馈系统理论近几年成为该领域的一个新热点。已在经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等广泛应用。【参考文献】[1]高粱,李莉.基于层次分析法的绩效评估权重设计,新疆大学报.2007[2]许树柏,层次分析法原理[M],天津:天津大学出版社,1988[3]焦树锋,AHP法中平均随机一致性指标的算法及MATLAB实现[J]太原师范学院学报(自然科学版),2006年第4期[4]李学平,用层次分析法求指标权重的标度方法的探讨[J],北京邮电大学学报,2001年第1期[5]郭金玉,张忠彬,孙庆云.层次分析法在安全科学研究中的应用[J].中国安全生产科学技术,2008,4(2):69—73[6]王彦威,邓海利,王永成.层次分析法在水安全评价中的应用[J].黑龙江水利科技,2007,35(3):117~11