2.2直接证明与间接证明2.2.1综合法和分析法演绎推理是证明数学结论、建立数学体系的重要思维过程.数学结论、证明思路的发现,主要靠合情推理.复习推理合情推理(或然性推理)演绎推理(必然性推理)归纳(特殊到一般)类比(特殊到特殊)三段论(一般到特殊)例:已知a0,b0,求证a(b2+c2)+b(c2+a2)≥4abc因为b2+c2≥2bc,a0所以a(b2+c2)≥2abc.又因为c2+b2≥2bc,b0所以b(c2+a2)≥2abc.因此a(b2+c2)+b(c2+a2)≥4abc.证明:为数证例:.已知a、b、c不全相等的正,b+c-ac+a-ba+b-c求:++3.abc利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.则综合法用框图表示为:1PQ12QQ23QQnQQ…特点:“由因导果”例:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形.一般地,利用已知条件和某些已经学过的定义、定理、公理等,经过一系列的推理、论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。特点:“由因导果”定义回顾基本不等式:(a0,b0)的证明.a+bab2证明:因为;所以所以所以成立()b20a20a+bab2a+baba+bab2证明:要证;只需证;只需证;只需证;因为成立所以成立a+bab22a+bab20a+bab()b20a()b20aa+bab2一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.特点:执果索因.用框图表示分析法的思考过程、特点.1QP23PP12PP得到一个明显成立的结论…例2、求证:5273证明:(用分析法)例:如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证AF⊥SCFESCBA证明:要证AF⊥SC只需证:SC⊥平面AEF只需证:AE⊥SC只需证:AE⊥平面SBC只需证:AE⊥BC只需证:BC⊥平面SAB只需证:BC⊥SA只需证:SA⊥平面ABC因为:SA⊥平面ABC成立所以.AF⊥SC成立22222π例.已知α,β≠kπ+(kZ),且2sinθ+cosθ=2sinαsinθcosθ=sinβ1-tanα1-tanβ求=.1+tanα2(1+tanβ)证:1QP23PP12PP得到一个明显成立的结论…也可以是经过证明的结论2.2.2间接证明--反证法复习1.直接证明的两种基本证法:综合法和分析法2.这两种基本证法的推证过程和特点:由因导果执果索因3、在实际解题时,两种方法如何运用?通常用分析法寻求思路,再由综合法书写过程综合法已知条件结论分析法结论已知条件道旁苦李王戎七岁时,爱和小朋友结伴玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上去摘李子,独有王戎没动.有人问王戎为什么?王戎回答说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”小伙伴摘取一个尝了一下,果然是苦李.王戎是怎么知道李子是苦的呢?他运用了怎样的推理方法?反证法:假设命题结论的反面成立,经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法.反证法的思维方法:正难则反归纳总结1例1、证明:在中,若是直角,则一定是锐角.ABCBC证明:假设结论不成立,则∠B是_____或______.当∠B是_____时,则_____________这与____________________________矛盾;当∠B是_____时,则______________这与____________________________矛盾;综上所述,假设不成立.∴∠B一定是锐角.直角钝角直角∠B+∠C=180°三角形的三个内角和等于180°钝角∠B+∠C>180°三角形的三个内角和等于180°1、用反证法证题的一般步骤是什么?(1)假设命题的结论不成立;即假设结论的反面成立.(2)从这个假设出发,经过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.归纳总结2应用反证法的情形:(1)直接证明困难;(2)需分成很多类进行讨论;(3)结论为“至少”、“至多”、“有无穷多个”---类命题;(4)结论为“唯一”类命题.2、用反正法证明时,导出矛盾有那几种可能?(1)与原命题的条件矛盾;(3)与定义、公理、定理、性质矛盾;(2)与假设矛盾;(4)与客观事实矛盾.原词语否定词原词语否定词等于任意的是至少有一个都是至多有一个大于至少有n个小于至多有n个对所有x成立对任何x不成立准确地作出反设(即否定结论)是非常重要的,下面是一些常见的关键词的否定形式.不是不都是不大于不小于一个也没有至少有两个至多有(n-1)个至少有(n+1)个存在某个x不成立存在某个x,成立不等于某个8////abababa例已知直线,和平面,如果,,且,求证:证明:用反证法证明a‖α。假设直线a与平面α不平行,则点A不在直线b上,否则a∩b=A与a‖b矛盾。于是假设错误,故原命题正确。则由于a不在平面α内,有a与α相交,设a∩α=A。1.反证法假设原命题(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明,从而证明了,这种证明方法叫做反证法.2.反证法常见矛盾类型在反证法中,经过正确的推理后“得出矛盾”,所得矛盾主要是指与矛盾,与、、、或矛盾,与矛盾.不成立假设错误原命题成立已知条件数学公理定理公式定义已被证明了的结论公认的简单事实方法小结:当堂测试1.应用反证法推出矛盾的推导过程中,要把下列哪些作为条件使用()①结论相反判断,即假设②原命题的结论③公理、定理、定义等④原命题的条件A.①④B.①②③C.①③④D.②③[答案]C[解析]由反证法的规则可知①③④都可作为条件使用,故应选C.2.命题“三角形中最多只有一个内角是直角”的结论的否定是()A.两个内角是直角B.有三个内角是直角C.至少有两个内角是直角D.没有一个内角是直角[答案]C[解析]“最多只有一个”即为“至多一个”,反设应为“至少有两个”,故应选C.3.如果两个实数之和为正数,则这两个数()A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数[答案]C[解析]假设两个数都是负数,则两个数之和为负数,与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.4.“任何三角形的外角都至少有两个钝角”的否定应是______________________________.[答案]存在一个三角形,其外角最多有一个钝角[解析]全称命题的否定形式为特称命题,而“至少有两个”的否定形式为“至多有一个”.故该命题的否定为“存在一个三角形,其外角最多有一个钝角”.5.若a,b,c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a,b,c至少有一个大于0.[证明]假设a,b,c三个数均不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0,又a+b+c=x2-2y+π2+y2-2z+π3+z2-2x+π6=(x-1)2+(y-1)2+(z-1)2+π-30.与假设矛盾,所以假设不成立.故原命题成立.即a,b,c至少有一个大于0.