放射治疗简称放疗,是目前治疗恶性肿瘤的重要手段之一。目前,大约60%~70%的肿瘤患者在病程不同时期,因不同的目的需要放射治疗,包括综合治疗和姑息治疗。随着放射设备的增加和更新,如今它已成为一种独立的专门学科,称为肿瘤入射击治疗学。自从X线和镭元素发现后,20世纪20年代,有了可靠的X线设备,Regard和Cowtard等开始用深部X线治疗喉癌。此后,由于放射设备的改进和对放射物理特性和了解,加上放射生物学、肿瘤学以及其他学科发展和促进,使放射肿瘤学不断发展,放射治疗在肿瘤治疗中地位逐渐得到了提高。现在最理想的放射治疗设备是光子能量为5~18MeV、电子能量为4~22MeV且能量可调的高能加速器,以及60Co、137Cs、125I或192Ir局部插植近距离治疗机,这些放射源的照射可以做到完全符合肿瘤体积的治疗需要,从而,最大限度的杀灭肿瘤细胞,提高治疗效果。(一)放射源的种类放射使用的放射源现共有三类:①放射性同位素发出的α、β、γ射线;②X线治疗机和和各种加速器产生的不同能量的X线;③各种加速器产生的电子束、质子束、中子束、负π介子束及其他重粒子束等。这些放射源以外照射和内照射两种基本照射方式进行治疗,除此之外,还有一种利用同位素治疗,既利用人体不同器官对某种放射性同位素的选择性吸收,将该种放射性同位素注入体内进行治疗,如131I治疗甲状腺癌,32P治疗癌性腹水等。(二)放射源设备1、X线治疗机临床治疗的X线机根据能量高低分为临界X线(6~10kv)、接触X线(10~60kv)、浅层X线(60~160kv)、高能X线(2~50MeV)。除高能X线主要由加速器产生以外,其余普通X线机由于深度剂量低、能量低、易于散射、剂量分布差等缺点,目前已被60Co和加速器取代。2、60Co治疗机60Co在衰变中释放的γ线平均能量为1.25MeV,和一般深部X线机相比,具有以下优点:①穿透力强,深部剂量较高,适用深部肿瘤治疗;②最大剂量点在皮下5mm,所以皮肤反应轻;③在骨组织中的吸收量低,因而骨损伤轻;④旁向散射少,射野外组织量少,全身积分量低;⑤与加速器相比,结构简单,维修方便,经济可靠。其不足之处是存在着半影问题。造成60Co机半影问题的原因有三种,即几何半影、穿射半影和散半影。半影的存在造成射野剂量的不均匀性。前两种半影是由机器设计造成的。采用复式限光筒或在限光筒与病人皮肤上放遮挡块,可以相对消除几何半影;采用同心球面遮光机可以相对消除穿射半影。目前,60Co治疗机有固定式和螺旋式两种类型。3、医用加速器加速器的种类很多,在医疗上使用最多的是电子感应加速器、电子直线加速器和电子回旋加速器。他们既可产生高能电子束,又能产生高能X线,其能量范围在4~50MeV。其中的电子回旋加速器既有电子感应加速器的经济性,又有电子直线加速器的高输出特点,而且,同时克服了两者的缺点,其输出量比直线加速器高几倍,其能量也容易调得高,无疑它将成为今后医用高能加速器发展的方向。(三)临床对射线的合理选择从物理和剂量角度看,临床上理想的射线在组织中造成的剂量分布,应尽量符合放射剂量学原则。即:①照射肿瘤的剂量要求准确;②对肿瘤区域内照射剂量的分布要求均匀;③尽量提高肿瘤内照射剂量,降低正常组织受量;④保护肿瘤周围的重要器官不受或少受照射。浅表肿瘤如皮肤癌、蕈样霉菌病、乳腺癌胸壁复发等用穿透力强的深部X线或低能电子线治疗。偏侧头颈部肿瘤也可用电子线,以保护深部正常组织。对大多数胸腹部病灶,深部剂量往往是首先考虑的问题。因此,为了达到较高深部剂量,常应用穿透力强的高能X线照射。但这不是惟一决定因素。Laughlin等和Sksrand等通过研究不同能量X线的剂量分布特性,认为并不是能量越高越好。能量越高,其康普顿吸收占主要地位,由此产生的次级电子造成半影增大,剂量平坦度差,对一般20cm体厚的病人,10~25mV的X线比较理想。高能电子束符合理想剂量分布,肿瘤区域的剂量分布比较均匀,而且,肿瘤后的正常组织照射剂量小。在选择哪一种射线治疗时。除了要考虑靶区深度以外,还在综合考虑放射野半影、骨吸收、肺和空肺的影响,以及中子污染程度等。头颈部、喉、乳房等靶区周围都有非均质结构,如空气腔、骨等。射线的半影问题,除了腹部和盆腔靶区外,对其他部位放疗时均需考虑之,骨吸收在许多部位均需注意。在临床实践中,为了获得更好的剂量分布,需要用两种以上的放射线联合应用。(四)临床放射生物学1、放射线的生物学效应生物的放射效应主要表现在体内生物大分子如核酸、蛋白质的损伤。DNA是生物体内最重要的放射敏感区。放射线引起的电离辐射对DNA分子的损伤,有直接和间接两种作用。直接作用是指射线直接损伤DNA分子,引起碱基破坏、单链或双链断裂、分子交联等,后者是指射线首先电离水分子,产生自由基,高度活泼的自由基再和有机分子作用。用来维持DNA的遗传稳定性的,是人体内DNA的损伤修复系统。DNA的修复包括无差错修复和差错倾向性修复。无差错修复的主要方式是切除修复,通过一系列核酸的修复系统将损伤部位切除,以完整的互补链为模板合成小片段DNA链填补空隙。差错倾向性修复方式主要是重组修复,依靠受损的DNA分子间的遗传重组以制成无损伤DNA分子,未去除的损伤在DNA分子,未去除的损伤在DNA不断复制中逐渐被稀释。人体组织器官对放射线的敏感性,与其组成细胞的繁殖能力成正比,与细胞分化程度成反比,就是说细胞繁殖能力越强的组织器官越敏感,细胞分化程度越低的器官越敏感;在一定剂量下与面积有关,即身体受照射的面积越大,反应越大。按组成细胞的繁殖和分化能力,可以将组织器官划分为敏感性高、敏感性较高、中度敏感、敏感性较低和敏感性低这5类。研究放射线对细胞增殖能力的影响,在临床放疗很有意义,以便更有效地杀灭那些可能复活并增殖的肿瘤细胞。在放射生物学上,鉴别细胞存活的惟一标准是,照射后的细胞是否保留无限繁殖能力。凡是失去无限繁殖能力,不能产生子代的细胞称为不存活细胞,就是所说的细胞死亡,而保留繁殖能力,能无限地产生子代的细胞称为存活细胞。细胞存活这个定义可反映肿瘤放疗后的效果,是鉴定疗效的较好的指标。1956年Puck描述了放射剂量与细胞存亡之间的关系曲线,称细胞存活曲线(Cellsurvivalcurve)。1967年由Elkind和Whitmore提出的多靶议程已经成为哺乳动物细胞存活曲线应用形式。存活曲线的低剂量区呈一肩段,被认为是亚致死损伤的修复,剂量增大超过此区则造成细胞呈指数性死亡。根据靶学说,细胞群体的细胞死亡率与靶数或打击数n相关,另外一个反映细胞放射敏感性的细胞是平均致死剂量(Do)。哺乳动物的Do值在1~2Gy很窄的范围内,已知Do和n值,便可求任何剂量下的细胞存活率。2、放射线对肿瘤组织的作用在影响肿瘤的放射感性的各种因素中,肿瘤组织的细胞起源和分化是主要因素。起源于放射敏感组织的肿瘤对放射线的敏感性较高,分化程度越差的肿瘤其对放射线敏感性也越高。生物体肿瘤细胞群内有在增殖周期的细胞(G0-S-G2-M)、静止细胞(G0)、无增殖能力细胞、破碎细胞。细胞群按一定的增殖动力学变化,按其生长率可用倍增时间来表示,它既受肿瘤外界环境影响,也受细胞增殖率(细胞周期时间)和细胞丢失率等内在因素的影响。对人体肿瘤的观察,发现细胞增殖率和细胞丢失率与放射敏感性之间有明显的关系,凡平均生长速度快、细胞更新率高的肿瘤,对放射也较敏感。肿瘤细胞群受打击后有其本身的,与正常组织不同的反应体系,利用放射线各种组织器官的正常细胞和肿瘤群的不同影响的损伤,以及它们恢复能力的差别,使放疗在正常组织能够耐受的条件下最大限度地杀灭肿瘤细胞。3、肿瘤生长速度和细胞增殖动力学对放疗反应的影响肿瘤的生长速度和细胞增殖动力学至少从3个途径影响肿瘤对放射治疗的反应,即:①在细胞周期内不同时期的细胞放射敏感性不同,因此,细胞群的放射敏感性和细胞在周期内的分布有关,照射后细胞群内细胞周期各期再分布,可以改变细胞群的放射敏感性;②两次照射期间细胞的再增长可以部分地抵消照射的杀伤作用,这也许是某些实验性肿瘤放射抗拒的原因;③潜在致死损伤修复的重要性和细胞群增殖动力方面的状态是有关的。4、放射治疗中的生物物理因素(1)线性能量传递和相对生物效应:线性能量传递(LET)是评价射线质的一个参数。深部X、60Co的γ和β线,其特点是在组织中沿着次级粒子经迹上的LET较小,一般称为低LET射线,这些射线的生理学效应大小对细胞的氧情况及细胞的生长周期依赖性较大,既对乏氧细胞和Go期细胞作用小。快中子、负л介子、重粒子的LET值高。销为高LET射线,这些射线几乎没有或者较少有亚致死损伤(SLD)和潜在致死者损伤(PLD)的修复,细胞存活曲线肩段小或消失。除中子外,高LET射线的物理特点是具有Bragg峰型剂量曲线,生物学特点是氧增强比(OER)低,其生物学效应大小对细胞的氧状态和生长周期依赖性小。目前,研究和应用最多的是快中子,利用其高LET特性对肿瘤进行放疗。临床治疗腮腺癌、晚期前列腺癌、骨肉瘤、软骨肉瘤、软组织肉瘤。局部控制分别已经达到71%、93%、67%、56%、和50%,较光子有明显优势。相对生物学效应(RBE)是指要达到同样生物效应时,所需标准射线和使用射线的剂量比值。RBE值的变化主要是指在分次治疗的剂量范围之中,因此,在临床应用中子治疗应选择与标准X线治疗有相应作用的剂量。低LET射线,OER值高、RBE值低、随LET值的增加,OER降低,RBE升高,其变化速度随LET值的增加逐渐加快。高LET射线,OER值低,RBE值高,在RBE高值时一个合适的LET射线产生的电离密度正好给予每个靶一次打击,杀灭细胞的能力达到最高点;但LEF在增加,高达100kev/μm时,OER愈加降低,但RBE却急速减少,这是由于高LET射线在一个细胞内的电离密度太高而产生过度杀伤的缘故。(2)分割放射治疗:自20世纪30年代以来,以临床实践经验为基础建立起业的分割放射治疗(每周5次,每次2Gy),被认为是标准的方法。这种方法符合正常组织和肿瘤组织对放射反应差异的客观规律,起到了尽可能保护正常组织,并保证一定的肿瘤细胞杀灭率的作用。分割放疗中的生物学因素有5个方面,通常称5R,即:放射损伤的修复:放射损伤是分割放疗中最普遍的生物学现象,亚致死损伤(SLD)的修复能增加细胞存活率。主要反映在存活曲线的肩段上,肩段的形状和细胞最大的修复能力对多次上剂量治疗效果都起决定作用。SLD的修复的能力在乏氧时和高LET射线进减少,由于肿瘤组织含水量一定的乏氧细胞,;因此,肿瘤分割放疗时的SLD累积比周围氧合好的正常组织多。PLD的修复主要发生在Go期细胞之中,表现为低LET射线照射后经过一定条件和时间,细胞存活率增高。某些肿瘤在慢增殖过程中Go期细胞含量高,因此,PLD的修复增强,这可能是分割治疗中肿瘤复发的来源。细胞周期再分布:哺乳动物细胞在增殖周期内不同期的细胞有不同的放射敏感性,分割放疗将会使最敏感的细胞选择性地明显减少,而留下较大比例的对放射相对抗拒的细胞。临床治疗的效果不仅决定于每个分割照射量的大小,同样也决定于两次照射的间隔。乏氧细胞的现再氧合:一般肿瘤内乏氧细胞比例约为15%~20%。一次照射后大部分氧合好的细胞被杀灭,肿瘤细胞群中乏氧细胞比例增加,可高达100%。经过一段间隔时间后,由于瘤体缩小,耗氧减少以及血管供应改善,乏氧细胞逐渐再氧合,其比例可恢复至治疗的水平。细胞再增殖和补充增殖:临床理想的效果是在各个分次照射之间正常组织细胞完全地再繁殖而肿瘤没有生长,使正常组织保持在稳定状态,而肿瘤群逐渐缩小。如大面积骨髓照射后造血干细胞生长比率增加,同时成熟速度回快,大量前驱细胞群很快更新;另一方面,肿瘤细胞数减少,虽然在代偿时其生长比率也增加,但每次细胞分裂后仍有相当多的细胞丢失。肿瘤正常组织内细胞减少不同的情况增强了治疗效果。(五)放射治疗的临床应用1、治疗计划肿瘤放射治疗计划的制定,应综合考虑肿瘤放射治疗的原则,根据放射治疗原则选择治疗方式,制定治疗计划。肿瘤放射