河北省沙河市第一中学高二数学《共线向量与共面向量》课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.1.2共线向量与共面向量复习回顾:一、共线向量:1.共线向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b记作//ab.规定:o与任一向量a是共线向量.2.共线向量定理:空间任意两个向量a、b(b≠0),a//b的充要条件是存在实数,使ab.复习回顾:1.共线向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b记作//ab.规定:o与任一向量a是共线向量.2.共线向量定理:空间任意两个向量a、b(b≠0),a//b的充要条件是存在实数,使ab.lAPaB⑴∵//APa,∴存在唯一实数tR,使APta.∴点P在直线l上唯一实数,tR使APta①⑵对于任意一点O,有APOPOA则点P在直线l上唯一实数,tR使OPOAta②⑶点B在直线l上,且ABa则点P在直线l上唯一实数,tR使OPOAtAB③注:①、②、③式都称为空间直线的向量表示式,即空间直线由空间一点及直线的方向向量唯一确定.O注:我们把非零向量a叫做直线l的方向向量.平面向量基本定理:如果是同一平面内两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数,使12ee,a12,1122aeeabBPCAab1.共面向量:平行于同一平面的向量,叫做共面向量.注意:空间任意两个向量是共面的,但空间任意三个向量既可能共面,也可能不共面二.共面向量:OAaa由平面向量基本定理知,如果,是平面内的两个不共线的向量,那么对于这一平面内的任意向量,有且只有一对实数,使如果空间向量与两不共线向量,共面,那么可将三个向量平移到同一平面,则有pxaybapb那么什么情况下三个向量共面呢?2211eea1e2e12aa1e2e反过来,对空间任意两个不共线的向量,,如果,那么向量与向量,有什么位置关系?abpxaybab共线,,分别与bbya,ax确定的平面内,都在bbya,ax确定的平面内,,并且此平行四边形在ba共面,与即确定的平面内,在bbbyap,aaxpabABPpCp2.共面向量定理:如果两个向量,不共线,pxaybabpab则向量与向量,共面的充要条件是存在实数对x,y使abABPpCabBCpPAO思考1:有平面ABC,若P点在此面内,须满足什么条件?结论:空间一点P位于平面ABC内存在有序实数对x,y使APxAByAC可证明或判断四点共面)(其中或者:或有:1)1(OCOBOAOPOCyOBxOAyxOPOPOAxAByAC或对空间任一点O,有1:已知A、B、M三点不共线,对于平面ABM外的任一点O,确定在下列各条件下,点P是否与A、B、M一定共面?(1)3OBOMOPOA+-(2)4OPOAOBOM注意:空间四点P、M、A、B共面存在唯一实数对,,xyMPxMAyMB()使得(1)OPxOMyOAzOBxyz其中,课堂练习一例1.如图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使求证:四点E、F、G、H共面;,OEOFOGOHkOAOBOCODOBAHGFECD例1(课本例)已知ABCD,从平面AC外一点O引向量A,,,OEkOAOFkOBOGkOCOHkOD求证:四点E、F、G、H共面;BCDOEFGH证明:∵四边形ABCD为①∴ACABAD(﹡)EGOGOEkOCkOA()kOCOAkAC(﹡)代入()kABAD()kOBOAODOAOFOEOHOE所以E、F、G、H共面。EFEH例2、已知两个非零向量e1,e2不共线,若AB=e1+e2,AC=2e1+8e2,AD=3e1-3e2求证:A,B,C,D共面1.下列说明正确的是:(A)在平面内共线的向量在空间不一定共线(B)在空间共线的向量在平面内不一定共线(C)在平面内共线的向量在空间一定不共线(D)在空间共线的向量在平面内一定共线2.下列说法正确的是:(A)平面内的任意两个向量都共线(B)空间的任意三个向量都不共面(C)空间的任意两个向量都共面(D)空间的任意三个向量都共面DC课堂练习二3.下列命题中正确的有:(1)pxaybpab 与、共面;(2)pabpxayb与、共面 ;(3)MPxMAyMBPMAB、、、共面;(4)PMABMPxMAyMB、、、共面;A.1个B.2个C.3个D.4个B课堂练习二4.已知点M在平面ABC内,并且对空间任意一点O,,则x的值为:OMxOAOBOC11++331.1.0.3.3ABCDD5.已知A、B、C三点不共线,对平面外一点O,在下列条件下,点P是否与A、B、C共面?212(1);555OPOAOBOC(2)22OPOAOBOC;共线向量共面向量定义向量所在直线互相平行或重合平行于同一平面的向量,叫做共面向量.定理推论运用判断三点共线,或两直线平行判断四点共面,或直线平行于平面)0(//ababapabpxaybABtOAOPACyABxOAOP小结共面)1(APyxOByOxO(1)OPxOAyOBzOCxyz

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功