1.2导数的运算法则

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

导数的运算法则:一可以直接使用的基本初等函数的导数公式11:()'0;2:()';3:(sin)'cos;4:(cos)'sin;5:()'ln(0);6:()';17:(log)'(0,1);ln18:(ln)';nnxxxxaCxnxxxxxaaaaeexaaxaxx公式公式公式公式公式公式公式且公式练一练:(1)下列各式正确的是()6551)'.(cos)'.(sinsin)'cos.(cos)'.(sinxxDxxCxxBA(为常数)C(2)下列各式正确的是()3ln3)'3.(3)'3.(10ln)'.(log1)'.(logxxxxaxaDxCxBxAD______)1(______;)(,)()3(''等于等于则fxfexfxxee'(5)(1)________xoga21(4),(3).yfx已知求227导数的运算法则:法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即:()()()()fxgxfxgx法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即:()()()()()()fxgxfxgxfxgx法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方.即:2()()()()()(()0)()()fxfxgxfxgxgxgxgx由法则2:()'()()()CfxCfxCfxCfx例1:求下列函数的导数:(1)y=x5-3x3-5x2+6;(2)y=(2x2+3)(3x-2);(3)y=x-1x+1;(4)y=x·tanx.解:(1)y′=(x5-3x3-5x2+6)′=(x5)′-(3x3)′-(5x2)′+6′解:(2)法一:y′=(2x2+3)′(3x-2)+(2x2+3)(3x-2)′=5x4-9x2-10x.=4x(3x-2)+(2x2+3)·3解:(2)法二:∵y=(2x2+3)·(3x-2)=6x3-4x2+9x-6,=18x2-8x+9.∴y′=18x2-8x+9.题型一:导数公式及导数运算法则的应用解:(4)y′=(x·tanx)′=(xsinxcosx)′=xsinx′cosx-xsinxcosx′cos2x=sinx+xcosxcosx+xsin2xcos2x=sinxcosx+xcos2x.(3)y=x-1x+1;(4)y=x·tanx.例2:求下列函数的导数(1)y=x(x2+1x+1x3);(2)y=exsinx;(3)y=x+3x2+3.解:(1)∵y=x(x2+1x+1x3)=x3+1+1x2,解:(2)y′=(exsinx)′=(ex)′sinx+ex(sinx)′∴y′=3x2-2x3.解:(3)y′=(x+3x2+3)′=x+3′x2+3-x+3x2+3′x2+32=exsinx+excosx=ex(sinx+cosx).=x2+3-x+3×2xx2+32=-x2-6x+3x2+32.二已知可导函数y=f(u),且u=g(x)则复合函数y=f(g(x))的导数'''.xxuyyu即y对x的导数等于y对u的导数与u对x的导数的乘积322224(1)2312(2);(3);1(4)tan;(5)(23)1;1(6);(7);yxxyxxxyxyxyyxyxxxx答案:2(1)32;yx2221(3);(1)xyx21(4);cosyx326(5);1xxyx2314(2);yxx54(6);yx3(7);2yx练习:1求下列函数的导数:2函数y=sin(x2+1)+cos3x的导数是()(A)y’=cos(x2+1)-sin3x(B)y’=2xcos(x2+1)-3sin3x(C)y’=2xcos(x2+1)+3sin3x(D)y’=cos(x2+1)+sin3xB3.函数y=3sin2x+l在点(π,1)处的切线方程是.y=1例3:已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a、b、c的值.解:因为y=ax2+bx+c过点(1,1),所以a+b+c=1.y′=2ax+b,又曲线过点(2,-1),曲线过点(2,-1)的切线的斜率为4a+b=1.由a+b+c=1,4a+b=1,4a+2b+c=-1,所以4a+2b+c=-1.所以a、b、c的值分别为3、-11、9.解得a=3,b=-11,c=9.例4:已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1、l2和x轴所围成的三角形的面积.解:(1)y′=2x+1.题型二:导数的综合应用∴直线l1的方程为y=3x-3.设直线l2过曲线y=x2+x-2上的点B(b,b2+b-2),则l2的方程为y=(2b+1)x-b2-2.因为l1⊥l2,所以直线l2的方程为y=-13x-229.则有2b+1=-13,b=-23.(2)解方程组y=3x-3,y=-13x-229,得x=16,y=-52.所以直线l1和l2的交点坐标为(16,-52).l1、l2与x轴交点的坐标分别为(1,0)、(-223,0).所以所求三角形的面积为S=12×253×|-52|=12512.例5:点P是曲线y=ex上任意一点,求点P到直线y=x的最小距离.解:根据题意设平行于直线y=x的直线与曲线y=ex相切于点(x0,y0),该切点即为与y=x距离最近的点,如图.则在点(x0,y0)处的切线斜率为1,∵y′=(ex)′=ex,即y′|x=x0=1.∴ex0=1,得x0=0,代入y0=ex0,得y0=1,利用点到直线的距离公式得距离为22.即P(0,1).例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均相切,求l的方程.解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).对于则与S1相切于P点的切线方程为y-x12=2x1(x-x1),即y=2x1x-x12.①,2,1xyS对于与S2相切于Q点的切线方程为y+(x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②),2(2,2xyS因为两切线重合,121122122222(2)02.420xxxxxxxx或若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.所以所求l的方程为:y=0或y=4x-4.例2求证:可导的奇函数f(x)的导函数f’(x)是偶函数.证明:∵f(x)是奇函数,∴对f(x)定义域D内任一个x,有-x∈D,且有f(-x)=-f(x).分别对上式左、右两边求导:[f(-x)]’=f’(-x)·(-x)’=-f’(-x),[-f(x)]’=-f’(x),∴-f’(-x)=-f’(x),即f’(-x)=f’(x),∴f’(x)是偶函数.

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功