第2讲直接证明与间接证明【2013年高考会这样考】1.在历年的高考中,证明方法是常考内容,考查的主要方式是对它们原理的理解和用法.难度多为中档题,也有高档题.2.从考查形式上看,主要以不等式、立体几何、解析几何、函数与方程、数列等知识为载体,考查综合法、分析法、反证法等方法.【复习指导】在备考中,对本部分的内容,要抓住关键,即分析法、综合法、反证法,要搞清三种方法的特点,把握三种方法在解决问题中的一般步骤,熟悉三种方法适用于解决的问题的类型,同时也要加强训练,达到熟能生巧,有效运用它们的目的.基础梳理1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Qn⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法.②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.2.间接证明一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t.t与假设矛盾,或与某个真命题矛盾.从而判定綈q为假,推出q为真的方法,叫做反证法.一个关系综合法与分析法的关系分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.两个防范(1)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.(2)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论P,再说明所要证明的数学问题成立.双基自测1.(人教A版教材习题改编)p=ab+cd,q=ma+nc·bm+dn(m、n、a、b、c、d均为正数),则p、q的大小为().A.p≥qB.p≤qC.p>qD.不确定解析q=ab+madn+nbcm+cd≥ab+2abcd+cd=ab+cd=p,当且仅当madn=nbcm时取等号.答案B2.设a=lg2+lg5,b=ex(x<0),则a与b大小关系为().A.a>bB.a<bC.a=bD.a≤b解析a=lg2+lg5=1,b=ex,当x<0时,0<b<1.∴a>b.答案A3.否定“自然数a,b,c中恰有一个偶数”时,正确的反设为().A.a,b,c都是奇数B.a,b,c都是偶数C.a,b,c中至少有两个偶数D.a,b,c中至少有两个偶数或都是奇数解析∵a,b,c恰有一个偶数,即a,b,c中只有一个偶数,其反面是有两个或两个以上偶数或没有一个偶数即全都是奇数,故只有D正确.答案D4.(2012·广州调研)设a、b∈R,若a-|b|>0,则下列不等式中正确的是().A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0解析∵a-|b|>0,∴|b|<a,∴a>0,∴-a<b<a,∴b+a>0.答案D5.在用反证法证明数学命题时,如果原命题的否定事项不止一个时,必须将结论的否定情况逐一驳倒,才能肯定原命题的正确.例如:在△ABC中,若AB=AC,P是△ABC内一点,∠APB>∠APC,求证:∠BAP<∠CAP,用反证法证明时应分:假设________和________两类.答案∠BAP=∠CAP∠BAP>∠CAP考向一综合法的应用【例1】►设a,b,c>0,证明:a2b+b2c+c2a≥a+b+c.[审题视点]用综合法证明,可考虑不等式左边两两结合.证明∵a,b,c>0,根据均值不等式,有a2b+b≥2a,b2c+c≥2b,c2a+a≥2c.三式相加:a2b+b2c+c2a+a+b+c≥2(a+b+c).a=b=c时取等号.即a2b+b2c+c2a≥a+b+c.综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法.其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性.【训练1】设a,b为互不相等的正数,且a+b=1,证明:1a+1b>4.证明1a+1b=1a+1b·(a+b)=2+ba+ab≥2+2=4.又a与b不相等.故1a+1b>4.【例2】►已知m>0,a,b∈R,求证:a+mb1+m2≤a2+mb21+m.[审题视点]先去分母,合并同类项,化成积式.证明∵m>0,∴1+m>0.所以要证原不等式成立,只需证明(a+mb)2≤(1+m)(a2+mb2),即证m(a2-2ab+b2)≥0,即证(a-b)2≥0,而(a-b)2≥0显然成立,故原不等式得证.逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件,正确把握转化方向是使问题顺利获解的关键.【训练2】已知a,b,m都是正数,且a<b.求证:a+mb+m>ab.证明要证明a+mb+m>ab,由于a,b,m都是正数,只需证a(b+m)<b(a+m),只需证am<bm,由于m>0,所以,只需证a<b.已知a<b,所以原不等式成立.(说明:本题还可用作差比较法、综合法、反证法)考向三反证法的应用【例3】►已知函数f(x)=ax+x-2x+1(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数.(2)用反证法证明f(x)=0没有负根.[审题视点]第(1)问用单调增函数的定义证明;第(2)问假设存在x0<0后,应推导出x0的范围与x0<0矛盾即可.证明(1)法一任取x1,x2∈(-1,+∞),不妨设x1<x2,则x2-x1>0,ax2-x1>1,且ax1>0.所以ax2-ax1=ax1(ax2-x1-1)>0.又因为x1+1>0,x2+1>0,所以x2-2x2+1-x1-2x1+1=x2-2x1+1-x1-2x2+1x2+1x1+1=3x2-x1x2+1x1+1>0,于是f(x2)-f(x1)=ax2-ax1+x2-2x2+1-x1-2x1+1>0,故函数f(x)在(-1,+∞)上为增函数.法二f′(x)=axlna+3x+12>0,∴f(x)在(-1,+∞)上为增函数.(2)假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-x0-2x0+1,又0<ax0<1,所以0<-x0-2x0+1<1,即12<x0<2,与x0<0(x0≠-1)假设矛盾.故f(x0)=0没有负根.当一个命题的结论是以“至多”,“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与事实矛盾等方面,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.【训练3】已知a,b为非零向量,且a,b不平行,求证:向量a+b与a-b不平行.证明假设向量a+b与a-b平行,即存在实数λ使a+b=λ(a-b)成立,则(1-λ)a+(1+λ)b=0,∵a,b不平行,∴1-λ=0,1+λ=0,得λ=1,λ=-1,所以方程组无解,故假设不成立,故原命题成立.规范解答24——怎样用反证法证明问题【问题研究】反证法是主要的间接证明方法,其基本特点是反设结论,导出矛盾,当问题从正面证明无法入手时,就可以考虑使用反证法进行证明.在高考中,对反证法的考查往往是在试题中某个重要的步骤进行.【解决方案】首先反设,且反设必须恰当,然后再推理得出矛盾,最后肯定原结论.【示例】►(本题满分12分)(2011·安徽)设直线l1:y=k1x+1,l2:y=k2x-1,其中实数k1,k2满足k1k2+2=0.(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2+y2=1上.第(1)问采用反证法,第(2)问解l1与l2的交点坐标,代入椭圆方程验证.[解答示范]证明(1)假设l1与l2不相交,则l1与l2平行或重合,有k1=k2,(2分)代入k1k2+2=0,得k21+2=0.(4分)这与k1为实数的事实相矛盾,从而k1≠k2,即l1与l2相交.(6分)(2)由方程组y=k1x+1,y=k2x-1,解得交点P的坐标(x,y)为x=2k2-k1,y=k2+k1k2-k1.(9分)从而2x2+y2=22k2-k12+k2+k1k2-k12=8+k22+k21+2k1k2k22+k21-2k1k2=k21+k22+4k21+k22+4=1,此即表明交点P(x,y)在椭圆2x2+y2=1上.(12分)用反证法证明不等式要把握三点:(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即应把结论的反面作为条件,且必须依据这一条件进行推证;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,但是推导出的矛盾必须是明显的.【试一试】已知数列{an}的前n项和为Sn,且满足an+Sn=2.(1)求数列{an}的通项公式;(2)求证数列{an}中不存在三项按原来顺序成等差数列.[尝试解答](1)当n=1时,a1+S1=2a1=2,则a1=1.又an+Sn=2,所以an+1+Sn+1=2,两式相减得an+1=12an,所以{an}是首项为1,公比为12的等比数列,所以an=12n-1.(2)反证法:假设存在三项按原来顺序成等差数列,记为ap+1,aq+1,ar+1(p<q<r,且p,q,r∈N*),则2·12q=12p+12r,所以2·2r-q=2r-p+1.①又因为p<q<r,所以r-q,r-p∈N*.所以①式左边是偶数,右边是奇数,等式不成立,所以假设不成立,原命题得证.单击此处进入活页限时训练