奥赛辅导第一讲物体的平衡问题(湖南郴州市湘南中学 陈礼生)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页共20页第一讲物体的平衡问题湖南郴州市湘南中学陈礼生一、知识点击物体相对于地面处于静止、匀速直线运动或匀速转动的状态,称为物体的平衡状态,简称物体的平衡.物体的平衡包括共点力作用下物体的平衡、具有固定转动轴的物体的平衡和一般物体的平衡.当物体受到的力或力的作用线交于同一点时,称这几个力为共点力.物体在共点力作用下,相对于地面处于静止或做匀速直线运动时,称为共点力作用下物体的平衡.当物体在外力的作用下相对于地面处于静止或可绕某一固定转动轴匀速转动时,称具有固定转动轴物体的平衡.当物体在非共点力的作用下处于平衡状态时,称一般物体的平衡.解决共点力作用下物体的平衡问题,或具有固定转动轴物体的平衡问题,或一般物体的平衡问题,首先把平衡物体隔离出来,进行受力分析,然后根据共点力作用下物体的平衡条件:物体所受的合外力为零,即∑F=0(如果将力正交分解,平衡的条件为:∑Fx=0、∑Fy=0);或具有固定转动轴的物体的平衡条件:物体所受的合力矩为零,即∑M=0;或一般物体的平衡条件:∑F=0;∑M=0列方程,再结合具体问题,利用数学工具和处理有关问题的方法进行求解.物体的平衡又分为随遇平衡、稳定平衡和不稳定平衡三种.一、稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩使物体返回平衡位置,这样的平衡叫做稳定平衡.如图1—1(a)中位于光滑碗底的小球的平衡状态就是稳定的.二、不稳定平衡:如果在物体离开平衡位置时发生的合力或合力矩能使这种偏离继续增大,这样的平衡叫做不稳定平衡,如图1—1(b)中位于光滑的球形顶端的小球,其平衡状态就是不稳定平衡.三、随遇平衡:如果在物体离开平衡位置时,它所受的力或力矩不发生变化,它在新的位置上仍处于平衡,这样的平衡叫做随遇平衡,如图1—1(c)中位于光滑水平板上的小球的平衡状态就是随遇的.第2页共20页从能量方面来分析,物体系统偏离平衡位置,势能增加者,为稳定平衡;减少者为不稳定平衡;不变者,为随遇平衡.如果物体所受的力是重力,则稳定平衡状态对应重力势能的极小值,亦即物体的重心有最低的位置.不稳定平衡状态对应重力势能的极大值,亦即物体的重心有最高的位置.随遇平衡状态对应于重力势能为常值,亦即物体的重心高度不变.二、方法演练类型一、物体平衡种类的问题一般有两种方法解题,一是根据平衡的条件从物体受力或力矩的特征来解题,二是根据物体发生偏离平衡位置后的能量变化来解题。例1.有一玩具跷板,如图1—2所示,试讨论它的稳定性(不考虑杆的质量).第3页共20页分析和解:假定物体偏离平衡位置少许,看其势能变化是处理此类问题的主要手段之一,本题要讨论其稳定性,可假设系统发生偏离平衡位置一个θ角,则:在平衡位置,系统的重力势能为(0)2(cos)ELlmg当系统偏离平衡位置θ角时,如图1一3所示,此时系统的重力势能为()[coscos()][coscos()]EmgLlmgLl2cos(cos)mgLl()(0)2(cos1)(cos)PEEEmgLl故只有当cosLl时,才是稳定平衡.例2.如图1—4所示,均匀杆长为a,一端靠在光滑竖直墙上,另一端靠在光滑的固定曲面上,且均处于Oxy平面内.如果要使杆子在该平面内为随遇平衡,试求该曲面在Oxy平面内的曲线方程.分析和解:本题也是一道物体平衡种类的问题,解此题显然也是要从能量的角度来考虑问题,即要使杆子在该平面内为随遇平衡,须杆子发生偏离时起重力势能不变,即杆子的质心不变,yC为常量。又由于AB杆竖直时12Cya,那么B点的坐标为sinxa111cos(1cos)222yaaa消去参数得222(2)xyaa类型二、物体系的平衡问题的最基本特征就是物体间受力情况、平衡条件互相制约,情况复杂解题时一定要正确使用好整体法和隔离法,才能比较容易地处理好这类问题。例3.三个完全相同的圆柱体,如图1一6叠放在水平桌面上,将C柱放上第4页共20页去之前,A、B两柱体之间接触而无任何挤压,假设桌面和柱体之间的摩擦因数为μ0,柱体与柱体之间的摩擦因数为μ,若系统处于平衡,μ0与μ必须满足什么条件?分析和解:这是一个物体系的平衡问题,因为A、B、C之间相互制约着而有单个物体在力系作用下处于平衡,所以用隔离法可以比较容易地处理此类问题。设每个圆柱的重力均为G,首先隔离C球,受力分析如图1一7所示,由∑Fcy=0可得11312()22NfG①再隔留A球,受力分析如图1一8所示,由∑FAy=0得11231022NfNG②由∑FAx=0得21131022fNN③由∑EA=0得12fRfR④由以上四式可得11223223NffG第5页共20页112NG,232NG而202fN,11fN0233,23类型三、物体在力系作用下的平衡问题中常常有摩擦力,而摩擦力Ff与弹力FN的合力凡与接触面法线方向的夹角θ不能大于摩擦角,这是判断物体不发生滑动的条件.在解题中经常用到摩擦角的概念.例4.如图1一8所示,有两根不可伸长的柔软的轻绳,长度分别为1l和2l,它们的下端在C点相连接并悬挂一质量为m的重物,上端分别与质量可忽略的小圆环A、B相连,圆环套在圆形水平横杆上.A、B可在横杆上滑动,它们与横杆间的动摩擦因数分别为μ1和μ2,且12ll。试求μ1和μ2在各种取值情况下,此系统处于静态平衡时两环之间的距离AB。分析和解:本题解题的关键是首先根据物体的平衡条件,分析小环的受力情况得出小环的平衡条件fNFF,由图1—9可知sintancosfTNTFFFF定义tan,为摩擦角,在得出摩擦角的概念以后,再由平衡条件成为展开讨论则解此题就方便多了。第6页共20页即由tantan情况1:BC绳松弛的情况θ1=00,不论μ1、μ2为何值,一定平衡。情况2:二绳均张紧的情况(图1—10)A环不滑动的条件为:11,即111tantan于是有1122111coscostan111111221tansinsintan11又由图1—11知1122coscosCDll222122122sin1cos1cosll所以,若要A端不滑动,AB必须满足22111112222211sin1sin11llABlll①根据对称性,只要将上式中的下角标1、2对调,即可得出B端不滑动时,AB必须满足的条件为:222221222211llABl②如果系统平衡,①②两式必须同时满足。从①式可以看出,μ1可能取任意正值和零,当μ1=0时,AB只能取最小值2221ll,此时θ1=0,2l拉直但无张力。从②式可以看出μ2的取值满足222211ll第7页共20页否则AB无解,222211ll时,AB取最小值2221ll。综上所述,AB的取值范围为:情况1:2l松弛22210ABll,μ1、μ2为任意非负数。情况2:2l张紧2221llAB[①②两式右边较小的],μ1为任意非负数,222211ll。类型四、一般物体平衡条件的问题主要又分为刚体定轴转动平衡问题和没有固定转动轴的刚体转动平衡问题,这类问题要按一般物体平衡条件来处理,即要么既要考虑力的平衡,又要考虑力矩平衡来求解;要么就要考虑以哪点为转动轴或哪点先动的问题。例5.质量分别为m和M的两个小球用长度为l的轻质硬杆连接,并按图1一11所示位置那样处于平衡状态.杆与棱边之间的摩擦因数为μ,小球m与竖直墙壁之间的摩擦力可以不计.为使图示的平衡状态不被破坏,参数m、M、μ、l、a和应满足什么条件?分析和解:本题是一道典型的刚体定轴转动平衡问题,解题时对整体进行受力分析,但物体的平衡不是共点力的平衡,处理时必须用正交分解法,同时还要考虑力矩的平衡,受力分析如图,根据力的平衡条件可列出:cossin()mNFMmg①1sincosmNNF②根据力矩平衡条件可写出:coscosNaMgl③杆不滑动的条件为FmΜn。由①得()cossinmMmgNFN,即()(cossin)MmgN④用③除④得2(1)cos(cossin)mlMa⑤第8页共20页杆不向右翻倒的条件为N1>0。由①和②可得出1cossinmNFN()coscossin0sinMmgNN由此可得()cosMmgN⑥将③中的N代人⑥得1cosmlMa⑦由于cosla,再考虑不等式⑦,可得21cos1cos(cossin)lmlaMa⑧为了在不等式⑧中能同时满足最后两个不等号,就必须满足条件:cos(cossin)1由此可得平衡条件为:tan,如果tan,就不可能出现平衡.例6.如图1一12,匀质杆长l,搁在半径为R的圆柱上,各接触面之间的摩擦因数均为μ,求平衡时杆与地面的夹角α应满足的关系.分析和解:本题也是一个一般物体的平衡问题与上题的区别在于没有固定转动轴,所以这个问题的难点在于系统内有三个接触点,三个点上的力都是静摩擦力,不知道哪个点最先发生移动.我们先列出各物体的平衡方程:设杆和圆柱的重力分别为G1和G2。对杆∑Fx=0Ff3+Ff2cosα=FN2sinα①∑Fy=0FN3+FN2cosα+Ff2sinα=G1②∑MO´=012coscos22NlGFR③对柱第9页共20页∑Fx=0Ff1+Ff2cosα=FN2sinα④∑Fy=0Ff2sinα+G2+FN2cosα=FN1⑤∑MO=0Ff1=Ff2⑥∑MO´=0FN2+G2=FN1⑦以上七个方程中只有六个有效,由⑦式可知,FN1FN2,又因为Ff1=Ff2,所以一定是2z处比1处容易移动,再来比较2处和O´处.(1)如果是2处先移动,必有Ff2=μFN2,代入④式,可得tan2,将此结果代入①②③式,即有2132(1)(sincos)2(1)fGLFR2312(1)[1(sincos)]2(1)NlFGR在这种情况下,如要Ff3≤μFN3,必须有22(1)(1)Rl杆要能搁在柱上,当然要tan2RRl因此在22(1)(1)tan2RRRll时,α=2arctanμ。(2)如果是0'处先移动,必有Ff3=μFN3,代入①②式,可有22tan2fNFF21tan2cos2NFGlR12cos(1tan)tan22Rl⑧满足⑧式的α即为平衡时的α,这时要求Ff2<FN2·μ,须有2211Rl第10页共20页综上所述当2211RRl时,α=2arctanμ。当2211Rl时,α应满足12cos(1tan)tan22Rl。三、小试身手1.如图1—13所示,长为L的均匀木杆AB,重量为G,系在两根长均为L的细绳的两端,并悬挂于O点,在A、B两端各挂一重量分别为G1、G2的两物,求杆AB处于平衡时,绳OA与竖直方向的夹角.2.一长为L的均匀薄板与一圆筒按图1—14所示放置,平衡时,板与地面成θ角,圆筒与薄板相接触于板的中心.板与圆筒的重量相同均为G.若板和圆筒与墙壁之间无摩擦,求地面对板下端施加的支持力和静摩擦力.第11页共20页3.如图1—15,两把相同的均匀梯子AC和BC,由C端的铰链连起来,组成人字形梯子,下端A和B相距6m,C端离水平地面4m,总重200N,一人重600N,由B端上爬,若梯子与地面的静摩擦因数μ=0.6,则人爬到何处梯子就要滑动?4.如图1—16所示,一均匀梯子,一端放在水平地面上,另一端靠在竖直墙上,梯子与地面和墙间的静摩擦因数分别为μ1和μ2,求梯子平衡时与地面所能成的最小夹角.5.如图

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功