对于数学之美的理解和感悟摘要:通过对数学的产生和发展及数学特点的简要介绍,表达了学习数学过程中产生的对于数学之美的理解和感悟。关键词:数学;数学文化;美伽利略曾说过:自然这本书是用数学语言写成的。哪里有数,哪里就有美。数学总是美的,数学是美的科学。数学的美具体表现在以下两个方面,一个是探索之美,就是它指导人类认识世界的能力;还有一个是应用之美,就是它指导人类改造世界的能力。数学是研究数与形的科学,它来源于生产,服务于生活,并不是空中楼阁。在古代埃及,尼罗河定期泛滥,重新丈量土地的需要发展了几何学;在古代中国,发达的农业生产及天文观测的需要,也促进了数学的发展。数学与社会文化始终是密切相关的。据说,两千多年前,柏拉图学园的门口挂着一块牌子,写着:“不懂几何的人不得入内。”柏拉图之后的两千多年,即1939年12月,英国数学家、哲学家怀特海在美国哈佛大学作了一次讲演,题为“数学与善”,认为只有人类的智力才能“从实例中抽象出某一类型东西来。可见,数学并不是一棵傲然孤立的大树。它是在人类的物质需求和精神生活影响下生长起来的,同时它也以自己独特的魅力对人类文化的不同领域产生深远影响。要谈数学的美,就不得不先从数学的产生和发展讲起。数学来源于人类的生产实践活动,即来源于原始人捕获猎物和分配猎物、丈量土地和测量容积、计算时间和制造器皿等实践,并随着人类社会生产力的发展而发展。数学经历了最初的,零碎的积累,而至今逐渐发展成熟,成为一门科学,其知识的运用已成为个人与团体生活中不可或缺的一部分。马克思曾说过:“一门科学只有成功地运用了数学,才能达到真正完善的境地。”作为一门基础科学,几乎所有的科学,包括化学,天文学,物理学,经济学等,都通过数学来提炼其严密的逻辑依据,并以数学的形式来表达自己的定律和公理等。比如:质能等价理论,爱因斯坦狭义相对论的最重要的推论,2MCE。正因为数学来自现实世界,正确地反映了客观世界联系形式的一部分,所以它才能被应用,才能指导实践,甚至预见某些现象和规律。比如:1844年英国的亚当斯利用引力定律和对天王星的观察资料,在海王星还没有被天文望远镜观测到之前就通过数学方法成功推算出这颗未知行星的轨道,预测了它的存在。其次,数学究竟有哪些特点呢?首先,数学具有高度的抽象性:它撇开了事物的具体内容,仅仅从抽象的数方面去进行研究。比如1+1这样简单的计算,它可能就是从一匹马加上一匹马是几匹马这样简单的问题抽象出来的,但是经过抽象以后,撇开具体的内容,它成为了一个规律。掌握了这个规律,那就不论是马,还是树或者其他任何事物都可以按这样的运算规律进行计算。其次,数学还具有准确性的特点。也即逻辑的严密性,结论的确定性。比如摆在眼前的一张桌子,你可以从颜色,质地,材料等方面来描绘它,但从数学的角度来看它,“1”张桌子就是真理,若是“2”张,甚至只是“1.0001”张,就是谬误了。最后,是应用的广泛性:这一点与数学的高度抽象性紧密相连,具体表现在一个数量关系,可以代表一切具有这样数量关系的实际问题。比如,经济学中的求解成本最小化和收益最大化的条件可以用同一个微分方程来表示,而抛去这个微分方程的具体意义不谈,又可以将它应用到其他经济学问题的解决中,这样,我们掌握了一种方法就能解决许多类似的问题。对于不同性质的现象具有相同的数学形式,就是相同的数量关系,是反映了物质世界的统一性,因为量的关系不只是存在于某一种特定的物质形态或者它的特定的运动形式中,而是普遍存在于各种物质形态和各种运动形式中。数学应用的广泛性可以由此见得。尽管随着现代数学的高度发展,数学似乎越来越远离人们的生活,向纯理论的方向发展,以至于一般人都会认为数学仅仅是对科学家、工程师,或许还有金融家才有用的一系列技巧。但实际上,技巧只是将数学的激情、推理、美和深刻的内涵剥落后的产物。我们应该看到,人们对于数学的应用能力是受到时代背景的限制的。两千多年前,圆锥曲线产生之初,人们也认为它不过是“富于思辨头脑中的无利可图的娱乐”,可是最终它却在现代天文学、仿射运动理论和万有引力定律中发挥了作用。所以说,数学是基于人们对美的追求而产生的一种需要极强的创造性的活动。抽象数学思想的大师罗素曾说:数学具有至高无上的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。的确,数学不仅具有完善的结构美,而且在证明和得出结论的过程中,还要运用必不可少的想象和直觉。如果美的组成和艺术作品的特征包括洞察力和想象力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。数学是逻辑性、理论性非常强的科学,在数学中综合了人类思维的理性之美,以及大自然的规律之美。数学又是很有用的科学,传统的社会科学如经济学、政治学、管理学等,都因为引入数学工具和数学思维方法而变得更加理性、更加可靠。我们应正确的认识数学的美,努力学好数学,为未来的科学生涯打下坚实的基础。参考文献:《数学的过去、现在和未来》1982年版中国青年出版社