平面向量坐标表示 公开课ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章平面向量§2.2平面向量的线性运算数应师范二班晁兴杰复习平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ1e1+λ2e2a=λ1e1+λ2e2复习(1)基底不唯一,关键是不共线;(2)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(3)基底给定时,分解形式唯一.λ1,λ2是被a,e1、e2唯一确定的数量。G=F1+F2F1F2GG=F1+F2叫做重力G的分解新课引入G与F1,F2有什么关系?类似地,由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2把一个向量分解为两个互相垂直的向量,叫做把向量正交分解若两个不共线向量互相垂直时aλ1a1λ2a2F1F2G正交分解知识点一:我们知道,在平面直角坐标系,每一个点都可用一对有序实数(即它的坐标)表示,对直角坐标平面内的每一个向量,如何表示?在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便。4321-1-2-3-2246ijP向量的坐标表示OyjxiMAB),(yxyixiMBMAMPyOxji分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得a=xi+yj把(x,y)叫做向量a的坐标,记作a=(x,y)其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标axiyji=j=0=(1,0)(0,1)(0,0)ayOxxiyjjia=(x,y)4321-1-2-3-2246ij),(yxP(,)OPxiyjxy2.向量的坐标与点的坐标关系O向量P(x,y)一一对应OPxiyjyOxajixiyj相等的向量坐标相同向量a、b有什么关系?a=b能说出向量b的坐标吗?b=(x,y)bxiyj思考1:如图,用基底i,j分别表示向量a、b、c、d,并求出它们的坐标.AA1A2abcd解:同理,b=-2i+3j=(-2,3)c=-2i-3j=(-2,-3)d=2i-3j=(2,-3)yxO1234-4-3-2-154321-1-2-3-4-5ji1234a=(2,3)由图可知a=AA1+AA2=2i+3j,已知),,(),,(2211yxbyxa你能得出a+b,a-b,的坐标吗?a已知,a=(x1,y1),b=(x2,y2),则a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j即a+b=(x1+x2,y1+y2)同理可得a-b=(x1-x2,y1-y2)这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。(2)(,)axiyjxiyjxy结论3:实数与向量乘积的坐标等于用这个实数乘原来向量的相应坐标.结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标。yxOB(x2,y2)A(x1,y1)如图,已知A(x1,y1),B(x2,y2),则AB=OB-OA=(x2,y2)-(x1,y1)=(x2-x1,y2-y1)例1已知a=(-2,3),b=(3,1),c=(10,-4),试用a,b表示c.解设c=xa+yb,则(10,-4)=x(-2,3)+y(3,1)=(-2x+3y,3x+y),∴10=-2x+3y,-4=3x+y,解得x=-2,y=2,∴c=-2a+2b.反思与感悟待定系数法是最基本的数学方法之一,它的实质是先将未知量设出来,再利用方程或方程组求解,把一个向量用其他两个向量表示,这是常用方法.课堂小结:1.向量的坐标的概念:2.对向量坐标表示的理解:3.平面向量的坐标运算:(1)任一平面向量都有唯一的坐标;(2)向量的坐标与其起点、终点坐标的关系;(3)相等的向量有相等的坐标.1122(,),(,),axybxy(1)若则1212(,),abxxyy1212(,),abxxyy11(,)axy1122(,),(,),AxyBxy(2)若2121(,)ABxxyy(,)axiyjxy

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功