高二数学课件:简单的线性规划课件教案练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

简单的线性规划第三课时宜丰中学江西省宜丰中学罗柳英微软公司董事长—比尔盖茨简单的线性规划(第三课时)5x+4y=202x+3y=12线性目标函数),(M720712Z的最大值为44已知实数x,y满足下列条件:5x+4y≤202x+3y≤12x≥0y≥0求z=9x+10y的最大值.最优解可行域9x+10y=0想一想:线性约束条件.............0123456123456xy代数问题(线性约束条件)图解法转化线性约束条件可行域转化线性目标函数Z=Ax+By一组平行线BZxy转化最优解图解法的步骤:1。画可行域;4。求出最优解作答.3。平移直线L0找最优解;2。作Z=0时的直线L0.三个转化一.复习平行线在y轴上的截距最值BZ某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.你应如何安排甲乙两种产品的产量(精确到0.1t),才能使利润总额达到最大?二.实际应用探索问题一:某工厂生产甲、乙两种产品.已知生产甲种产品1t需消耗A种矿石10t、B种矿石5t、煤4t;生产乙种产品1t需消耗A种矿石4t、B种矿石4t、煤9t.每1t甲种产品的利润是600元,每1t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过300t、消耗B种矿石不超过200t、消耗煤不超过360t.你应如何安排甲乙两种产品的产量(精确到0.1t),才能使利润总额达到最大?分析问题:2.本问题给定了哪些原材料?1.该工厂生产哪些产品?3.每吨产品对原材料的消耗量各是多少?4.该工厂对原材料有何限定条件?5.每种产品的利润是多少?原材料每吨产品消耗的原材料A种矿石B种矿石煤甲产品(t)乙产品(t)1054449原材料限额300200360利润6001000xtyt10x+4y≤3005x+4y≤2004x+9y≤360x≥0y≥0z=600x+1000y.目标函数:设生产甲、乙两种产品的产量分别为xt、yt,利润总额为z元解:设生产甲、乙两种产品.分别为xt、yt,利润总额为z元,那么10x+4y≤3005x+4y≤2004x+9y≤360x≥0y≥0z=600x+1000y.画出以上不等式组所表示的可行域作出直线L600x+1000y=0.解得交点M的坐标为(12.4,34.4)5x+4y=200{4x+9y=360由10x+4y=3005x+4y=2004x+9y=360600x+1000y=0M答:应生产甲产品约12.4吨,乙产品34.4吨,能使利润总额达到最大。(12.4,34.4)经过可行域上的点M时,目标函数在y轴上截距最大.90300xy10201075405040此时z=600x+1000y取得最大值.4834291000411229360.y.x把直线L向右上方平移实际问题线性规划问题列出约束条件建立目标函数分析问题(列表)设立变量转化列约束条件时要注意到变量的范围.注意:解决问题最优解某工厂现有两种大小不同规格的钢板可截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型钢板类型第一种钢板第二种钢板A规格B规格C规格212131某顾客需要A,B,C三种规格的成品分别为15,18,27块,若你是生产部经理,问各截这两种钢板多少张既能满足顾客要求又使所用钢板张数最少。探索问题二:解:设需截第一种钢板x张,第二种钢板y张,钢板总张数为Z,则2x+y≥15,x+2y≥18,x+3y≥27,x≥0y≥0目标函数:z=x+y)Ny,x(x0y2x+y=15x+3y=27x+2y=18x+y=02x+y≥15,{x+2y≥18,x+3y≥27,x≥0,y≥0在可行域内直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解.作出直线L:x+y=0,目标函数:z=x+yB(3,9)C(4,8)A(3.6,7.8)当直线L经过点A时z=x+y=11.4,x+y=12246181282724681015但它不是最优整数解.作直线x+y=12答(略)约束条件:画可行域平移L找交点及交点坐标)Ny,x(图例题4.gsp示继续平移L找最优整数解调整Z的值,X+y=11.4A调整优值法即先求非整数条件下的最优解,调整Z的值使不定方程Ax+By=Z存在最大(小)的整点值,最后筛选出整点最优解.即先打网格,描出可行域内的整点,平移直线,最先经过(或最后)经过的整点坐标即为最优整解.线性规划求最优整数解的一般方法:1.平移找解法:2.调整优值法:小结咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g、咖啡4g、糖3g,乙种饮料每杯含奶粉4g、咖啡5g、糖10g.已知每天原料的使用限额为奶粉3600g,咖啡2000g糖3000g,如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?练习一.gsp-巩固练习一解:设每天应配制甲种饮料x杯,乙种饮料y杯,则003000103200054360049yxyxyxyx作出可行域:目标函数为:z=0.7x+1.2y作直线l:0.7x+1.2y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点C,且与原点距离最大,此时z=0.7x+1.2y取最大值解方程组得点C的坐标为(200,240),3000103,200054yxyx_0_9x+4y=3600_C(200,240)_4x+5y=2000_3x+10y=3000_7x+12y=0_400_400_300_500_1000_900_0_x_y目标函数为:z=0.7x+1.2y答:每天配制甲种饮料200杯,乙种饮料240杯可获取最大利润.小结小结:实际问题分析问题设出变量列出约束条件建立目标函数转化建模线性规划问题图解法理论最优解三个转化四个步骤调整实际最优解平移找解法调整优值法常用方法整数最优解作答思考问题一:探索问题一(课本例题3)的最优解是(12.4,34.4).它存在最优整数解吗?若存在,求出最优整数解.若不存在,请说明理由.例3.gsp图形作业:习题7.4第3题;第4题结束某货运公司拟用集装箱托运甲.乙两种货物,一个大集装箱所装托运货物的总体积不能超过24,总重量不能超过1500kg,甲.乙两种货物每袋的体积.重量和可获得的利润,列表如下:思考问题二3m货物每袋体积(立方米)每袋重量(100kg)每袋利润(单位百元)甲5220乙4315问在一个大集装箱内这两种(不能只装一种)货物各装多少袋时,可获得最大的利润?解:设托运甲货物x袋,托运乙货物y袋,获得利润为z(百元)图象Z=20x+15y(x,y)N5x+4y242x+3y15X0Y0

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功