微积分学的创始人之一数学大师莱布尼茨Friedrich.Leibniz(1646~1716年)莱布尼茨(Leibniz)莱布尼茨(1646~1716年)是在建立微积分中唯一可以与牛顿并列的科学家。他研究法律,在答辩了关于逻辑的论文后,得到哲学学士学位。1666年以论文《论组合的艺术》获得阿尔特道夫大学哲学博士学位,同时获得该校的教授席位。1671年,他制造了他的计算机。1672年3月作为梅因兹的选帝侯大使,政治出差导巴黎。这次访问使他同数学家和科学家有了接触,激起了他对数学的兴趣。可以说,在此之前(1672年前)莱布尼茨基本上不懂数学。1673年他到伦敦,遇到另一些数学家和科学家,促使他更加深入地钻研数学。虽然莱布尼茨靠做外交官生活,卷入各种政治活动,但他的科学研究工作领域是广泛的,他的业余生活的活动范围是庞大的。除了是外交官外,莱布尼茨还是哲学家、法学家、历史学家、语言学家和先驱的地质学家,他在逻辑学、力学、数学、流体静力学、气体学、航海学和计算机方面做了重要工作。虽然他的教授席位是法学的,但他在数学和哲学方面的著作被列于世界上曾产生过的最优秀的著作中。他用通信保持和人们的接触,最远的到锡兰(Ceylon)和中国。1714年莱布尼茨写了《微分学的历史和起源》,在这本书中,他给出了一些关于自己思想发展的记载,由于他出书的目的是为了澄清当时加于他的剽窃罪名,所以他可能不自觉地歪曲了关于他的思想来源的记载。不管他的笔记本多么混乱,都揭示了一个最伟大的才智,怎样为了达到理解和创造而奋斗。特别值得一提的是:莱布尼茨很早就意识到,微分与积分(看作是和)必定是相反的过程;1676年6月23日的手稿中,他意识到求切线的最好方法是求dy/dx,其中dy,dx是变量的差,dy/dx是差的商。莱布尼茨的工作,虽然富于启发性而且意义深远,但它是十分零乱不全的,以致几乎不能理解。幸好贝努利兄弟将他的文章大大加工,并做了大量的发展工作。1716年,他无声无息地死去。他于1669年提议建立德国科学院,从事对人类有益的力学中的发明和化学、生理学方面的发现(1700年柏林科学院成立)。莱布尼茨从1684年开始发表论文,但他的许多成果以及他的思想的发展,实际上都包含在他从1673年起写的,但从未发表过的成百的笔记本中。从这些笔记本中人们可以看到,他从一个课题跳到另一个课题,并随着他的思想的发展而改变他所用的记号。有些是它在研究格雷戈里、费马、帕斯卡、巴罗的书和文章时,或是试图将他们的思想纳入自己处理微积分的方式时所出现的简单思想。主要成就一、始创微积分二、八卦方圆图与二进制三、高等数学上的众多成就四、计算机科学贡献五、丰硕的物理学成果始创微积分17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼茨在1673—1676年间也发表了微积分思想的论著。以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。只有莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。八卦方圆图与二进制关于莱布尼茨的二进制与中国的八卦图的关系,有许多的考证,但是对于莱布尼茨是受到八卦图的影响而发明二进制还是单独发明二进制,迄今似乎也没有定论。胡阳、李长铎的著作《莱布尼茨-二进制与伏羲八卦图考》给出了比较可信的材料,表明莱布尼茨的二进制至少在某种程度上受到了八卦图的启发。1687年,耶酥会士柏应理出版了《中国哲学家孔子》一书,其中共计13页对伏羲八卦图做了介绍,书中配有伏羲八卦次序图、伏羲八卦方位图及文王六十四卦图。而值得一提的是,在伏羲八卦次序图、伏羲八卦方位图及文王六十四卦图中,在相应的卦象上,标有阿拉伯数字1到64。而在莱布尼茨的二进制中,通过0与1引申,就可以表示一切数字,如000,001,010,011,100分别代表0-4这几个数字。而在易经八卦中,通过阴阳引申,就可以表示宇宙万有的原理。如果把阴爻看作0,把阳爻看作1,所有的卦象于是也就可以看成0和1的组合。比如坤卦就是000000,乾卦就是111111,大有卦就是111101等等。伏羲图的六十四个卦象,也正好可以看作二进制算术从0到63的数字。莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼茨证明了自己结论是正确的。他还对线性方程组进行研究,对消元法从理论上进行了探讨,并首先引入了行列式的概念,提出行列式的某些理论,此外,莱布尼茨还创立了符号逻辑学的基本概念高等数学上的众多成就1673年莱布尼茨特地到巴黎去制造了一个能进行加、减、乘、除及开方运算的计算机。这是继帕斯卡加法机后,计算工具的又一进步。帕斯卡逝世后,莱布尼茨发现了一篇由帕斯卡亲自撰写的“加法器”论文,勾起了他强烈的发明欲望,决心把这种机器的功能扩大为乘除运算。莱布尼茨早年历经坎坷。在获得了一次出使法国的机会后,为实现制造计算机的夙愿创造了契机。在巴黎,莱布尼茨聘请到一些著名机械专家和能工巧匠协助工作,终于在1674年造出一台更完善的机械计算机。莱布尼茨发明的机器叫“乘法器”,约1米长,内部安装了一系列齿轮机构,除了体积较大之外,基本原理继承于帕斯卡。不过,莱布尼茨为计算机增添了一种名叫“步进轮”的装置。步进轮是一个有9个齿的长圆柱体,9个齿依次分布于圆柱表面;旁边另有个小齿轮可以沿着轴向移动,以便逐次与步进轮啮合。每当小齿轮转动一圈,步进轮可根据它与小齿轮啮合的齿数,分别转动1/10、2/10圈……,直到9/10圈,这样一来,它就能够连续重复地做加减法,在转动手柄的过程中,使这种重复加减转变为乘除运算。计算机科学贡献莱布尼茨对计算机的贡献不仅在于乘法器,公元1700年左右,莱布尼茨从一位友人送给他的中国“易图”(八卦)里受到启发,最终悟出了二进制数之真谛。虽然莱布尼茨的乘法器仍然采用十进制,但他率先为计算机的设计,系统提出了二进制的运算法则,为计算机的现代发展奠定了坚实的基础。在这两个人死了很久以后,调查证明:虽然牛顿的大部分工作是在莱布尼茨之前做的,但是莱布尼茨是微积分思想的独立发明者。两个人都受到巴罗的很多启发。创建微积分优先权的争论丰硕的物理学成果莱布尼茨的物理学成就也是非凡的。1671年,莱布尼茨发表了《物理学新假说》一文,提出了具体运动原理和抽象运动原理,认为运动着的物体,不论多么渺小,它将带着处于完全静止状态的物体的部分一起运动。他还对笛卡儿提出的动量守恒原理进行了认真的探讨,提出了能量守恒原理的雏型,并在《教师学报》上发表了《关于笛卡儿和其他人在自然定律方面的显著错误的简短证明》,提出了运动的量的问题,证明了动量不能作为运动的度量单位,并引入动能概念,第一次认为动能守恒是一个普通的物理原理。他又充分地证明了“永动机是不可能”的观点。他也反对牛顿的绝对时空观,认为“没有物质也就没有空间,空间本身不是绝对的实在性”,“空间和物质的区别就象时间和运动的区别一样,可是这些东西虽有区别,却是不可分离的”。这一思想后来引起了马赫、爱因斯坦等人的关注。1684年,莱布尼茨在《固体受力的新分析证明》一文中指出,纤维可以延伸,其张力与伸长成正比,因此他提出将胡克定律应用于单根纤维。这一假说后来在材料力学中被称为马里奥特——莱布尼茨理论。在光学方面,莱布尼茨也有所建树,他利用微积分中的求极值方法,推导出了折射定律,并尝试用求极值的方法解释光学基本定律。可以说莱布尼茨的物理学研究一直是朝着为物理学建立一个类似欧氏几何公理系统的目标前进的。创建微积分优先权的争论牛顿从1665年到1687年把结果通知了他的朋友,特别是把他的短文《分析学》送给了巴罗,但他于1687年以前,并没有正式公开发表过微积分方面的任何工作。创建微积分优先权的争论虽然莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。然而,他直到1684年才正式公开发表微积分的著作。于是就发生了莱布尼茨是否知道牛顿工作详情的问题。莱布尼茨被指责为剽窃者。这件事的结果是,英国的和大陆的数学家停止了思想交换。因为牛顿在微积分方面的主要工作是以几何为工具的,所以在他死后近一百年中,英国人继续以几何为主要工具研究微积分。而大陆的数学家继续使用莱布尼茨的分析方法,使它发展并不断进行改善。这件事的影响非常巨大,它不仅使英国的数学家落在后面,而且使数学学科损失了一批最有才能的人所应作出的贡献。创建微积分优先权的争论谢谢