高中数学必修1-必修5知识点总结高中数学必修1知识点第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法NNZRQ表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.xxx③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图(或A中的任一元素都属(2)A(B)子集BA于B(3)若且,则)或若且,则(1)(A为非空子集),且B中至真子集BA少有一元素不属于(或BA)(2)若且,则中的任一元素都属集合(1)ABA(B)于B,B中的任一元素相等(2)BA都属于(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算1(8)交集、并集、补集名称记号意义性质示意图(1)且(2)交集AB(3)(1)或(2)并集BA(3)12ðUU且痧(B)ðA补集UUUU痧UUU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集或把看成一个整体,化成,型不等式来求解(2)一元二次不等式的解法判别式2二次函数O的图象一元二次方程无实根的根(其中或R212a的解集122的解集〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念xABABf①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合ABABf(x)f中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:f(x)①是整式时,定义域是全体实数.f(x)②是分式函数时,定义域是使分母不为零的一切实数.f(x)③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤中,.2⑥零(负)指数幂的底数不能为零.f(x)⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.f(x)[a,b]f[g(x)]⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.3(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念ABABf①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有ABABAf唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素bbaa叫做元素的象,元素叫做元素的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的定义图象判定方法性质4如果对于属于定义域I内某(1)利用定义y个区间上的任意两个自变量(2)利用已知函数的y=f(X)f(x)的值x、x,当xx时,都单调性...12122..有f(x)f(x),那么就说(3)利用函数图象(在.........12..f(x)f(x)在这个区间上是增函数.1某个区间图...ox象上升为增)xx12(4)利用复合函数函数的单调性(1)利用定义yy=f(X)如果对于属于定义域I内某(2)利用已知函数的个区间上的任意两个自变量单调性f(x)1的值x、x,当xx时,都(3)利用函数图象(在...1212..f(x)有f(x)f(x),那么就说2某个区间图.........12..of(x)在这个区间上是减函数.x象下降为减)...xx21(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质x分别在、上为增函数,分别在ox、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有(2)存在,使得.那么,我们称是函数的最小值,记作;.max5【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有f(-x)=-判断定义域是否关于.......f(x),那么函数f(x)叫做奇函原点对称)......数.(2)利用图象(图象.关于原点对称)函数的奇偶性如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有f(-x)=f(x),判断定义域是否关于..........那么函数f(x)叫做偶函数.原点对称)...(2)利用图象(图象关于y轴对称)x若函数为奇函数,且在处有定义,则.yy③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换左移h个单位右移|h|个单位上移k个单位下移|k|个单位②伸缩变换伸缩缩伸③对称变换y轴x轴直线原点去掉y轴左边图象保留y轴右边图象,并作其关于y轴对称图象保留x轴上方图象将x轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念如果,且,那么叫做的次方根.当是奇数时,nnaaannann的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根.nanana②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.nnnnnn根式的性质:;当为奇数时,;当为偶数时,.(2)分数指数幂的概念m正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质【2.1.2】指数函数及其性质7(4)指数函数函数名称指数函数x定义函数且叫做指数函数yxxy图象(0,1)OOxx定义域R值域图象过定点,即当时,.过定点非奇非偶奇偶性单调性RR在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义且①若,则叫做以为底的对数,记作,其中叫做底数,aN叫做真数.②负数和零没有对数.③对数式与指数式的互化:.a(2)几个重要的对数恒等式,,.aaa(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中„).10e8(4)对数的运算性质如果,那么①加法:②减法:③数乘:④a且⑤⑥换底公式:baaablogab【2.2.2】对数函数及其性质(5)对数函数函数对数函数名称log定义函数且叫做对数函数aa图象(1,0)OO(1,0)xx定义域值域R过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的aa变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高.(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如9C果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法确定反函数的定义域,即原函数的值域;②从原函数式中反解出;将改写成,并注明反函数的定义域.(8)反函数的性质x①原函数与反函数的图象关于直线对称.函数的定义域、值域分别是其反函数的值域、定义域.若在原函数的图象上,则在反函数的图象上.一般地,函数要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第10y一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(1,1)(0,)②过定点:所有的幂函数在都有定义,并且图象都通过点.00[0,)③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的x(0,)y图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互pqq质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则q是偶函数,若为偶数为奇数时,则是非奇非偶函数.101,(0,)⑤图象特征:幂函数,当时,