北京市2016届高三数学理一轮复习专题突破训练统计与概率一、选择、填空题1、(东城区2015届高三二模)甲、乙两名同学8次数学测验成绩如茎叶图所示,12,xx分别表示甲、乙两名同学8次数学测验成绩的平均数,12,ss分别表示甲、乙两名同学8次数学测验成绩的标准差,则有(A)12xx,12ss(B)12xx,12ss(C)12xx,12ss(D)12xx,12ss2、(房山区2015届高三一模)如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角6,现在向该正方形区域内随机地投掷一支飞镖,飞镖落在小正方形内的概率是____.3、(丰台区2015届高三上学期期末)高二年级某研究性学习小组为了了解本校高一学生课外阅读状况,分成了两个调查小组分别对高一学生进行抽样调查,假设这两组同学抽取的样本容量相同且抽样方法合理,则下列结论正确的是(A)两组同学制作的样本频率分布直方图一定相同(B)两组同学的样本平均数一定相等(C)两组同学的样本标准差一定相等(D)该校高一年级每位同学被抽到的可能性一定相同4、(大兴区2015届高三上学期期末)已知圆M:224xy,在圆周上随机取一点P,则P到直线2xy的距离大于22的概率为5、(朝阳区2015届高三上学期期中)设不等式组240,0,0xyxy表示平面区域为D,在区域D内随机取一点P,则点P落在圆221xy内的概率为6、某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是______.7、下图是根据50个城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是5.26,5.20,样本数据的分组为5.21,5.20,5.22,5.21,5.23,5.22,5.24,5.23,5.25,5.24,5.26,5.25.由图中数据可知a;样本中平均气温不低于23.5℃的城市个数为.8、设不等式组22,42xyxy0≤,表示的平面区域为D.在区域D内随机取一个点,则此点到直线+2=0y的距离大于2的概率是A.413B.513C.825D.9259、将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是()(A)221(B)463(C)121(D)26310、从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是(A)13(B)12(C)23(D)56二、解答题1、(2015年北京高考)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果25a,求甲的康复时间比乙的康复时间长的概率;20.521.522.523.524.525.526.5平均气温/℃频率/组距0.260.22a0.120.10O(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)2、(2014年北京高考)李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率.(2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一场不超过6.0的概率.(3)记x是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这比赛中的命中次数,比较)(XE与x的大小(只需写出结论)3、(2013年北京高考)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)4、(朝阳区2015届高三一模)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100),据此解答如下问题.(1)求全班人数及分数在[80,100]之间的频率;(2)现从分数在[80,100]之间的试卷中任取3份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为X,求X的分布列和数学望期.5、(东城区2015届高三二模)某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中C课程且乙同学未选中C课程的概率;(Ⅱ)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.6、(房山区2015届高三一模)为了解今年某校高三毕业班报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图如图所示,已知图中从左到右的前3组的频率之比为1:2:3,其中第2组的频数为12.(Ⅰ)求该校报考飞行员的总人数;(Ⅱ)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.7、(丰台区2015届高三一模)甲、乙两人为了响应政府“节能减排”的号召,决定各购置一辆纯电动汽车.经了解目前市场上销售的主流纯电动汽车,按续驶里程数R(单位:公里)可分为三类车型,A:80≤R<150,B:150≤R<250,C:R≥250.甲从A,B,C三类车型中挑选,乙从B,C两类车型中挑选,甲、乙二人选择各类车型的概率如下表:3414乙CB15qp甲A人概率车型若甲、乙都选C类车型的概率为310.(Ⅰ)求p,q的值;(Ⅱ)求甲、乙选择不同车型的概率;(Ⅲ)某市对购买纯电动汽车进行补贴,补贴标准如下表:车型ABC补贴金额(万元/辆)345记甲、乙两人购车所获得的财政补贴和.为X,求X的分布列.8、(海淀区2015届高三二模)某中学为了解初三年级学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:已知该项目评分标准为:注:满分10分,且得9分以上(含9分)定为“优秀”.(Ⅰ)求上述20名女生得分..的中位数和众数;(Ⅱ)从上述20名男生中,随机抽取2名,求抽取的2名男生中优秀人数X的分布列;(Ⅲ)根据以上样本数据和你所学的统计知识,试估计该年级学生实心球项目的整体情况.(写出两个结论即可)男生投掷距离(单位:米)女生投掷距离(单位:米)9775.468766.4556669667.0024455558855308.173119.22010.男生投掷距离(米)…[5.4,6.0)[6.0,6.6)[6.6,7.4)[7.4,7.8)[7.8,8.6)[8.6,10.0)[10.0,)女生投掷距离(米)…[5.1,5.4)[5.4,5.6)[5.6,6.4)[6.4,6.8)[6.8,7.2)[7.2,7.6)[7.6,)~个人得分(分)…456789109、(石景山区2015届高三一模)国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:下表是由天气网获得的全国东西部各6个城市2015年3月某时刻实时监测到的数据:西部城市AQI数值东部城市AQI数值西安108北京104西宁92金门42克拉玛依37上海x鄂尔多斯56苏州114巴彦淖尔61天津105库尔勒456石家庄93AQI平均值:135AQI平均值:90(Ⅰ)求x的值,并根据上表中的统计数据,判断东、西部城市AQI数值的方差的大小关系(只需写出结果);(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取3个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为,求的分布列和数学期望.AQI值范围[0,50)[50,100)[100,150)[150,200)[200,300)300及以上10、(西城区2015届高三一模)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望;(Ⅲ)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s公里,试写出s的取值范围.(只需写出结论)11、(丰台区2015届高三上学期期末)某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据整理后,绘制出频率分布直方图如图所示,其中样本数据分组区间为[50,60),[60,70),[70,80),[80,90),[90,100].(I)试估计全市学生参加汉字听写考试的平均成绩;(Ⅱ)如果从参加本次考试的同学中随机选取1名同学,求这名同学考试成绩在80分以上的概率;(Ⅲ)如果从参加本次考试的同学中随机选取3名同学,这3名同学中考试成绩在80分以上的人数记为X,求X的分布列及数学期望.(注:频率可以视为相应的概率)12、(海淀区2015届高三上学期期末)某中学在高二年级开设大学先修课程《线性代数》,共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的教学效果进行评估,学校按性别采用分层抽样的方法抽取5人进行考核.(Ⅰ)求抽取的5人中男、女同学的人数;(Ⅱ)考核的第一轮是答辩,顺序由已抽取的甲、乙等5位同学按抽签方式决定.设甲、乙两位同学间隔的人数为X,X的分布列为求数学期望EX;(Ⅲ)考核的第二轮是笔试:5位同学的笔试成绩分别为115,122,105,111,109;结合第一轮的答辩情况,他们的考核成绩分别为125,132,115,121,119.这5位同学笔试成绩与考核成绩的方差分别记为21s,22s,试比较21s与22s的大小.(只需写出结论)X3210Pab3102513、(西城区2015届高三上学期期末)现有两种投资方案,一年后投资盈亏的情况如下:(1)投资股市:投资结果获利40%不赔不赚亏损20%概率121838(2)购买基金:投资结果获利20%不赔不赚亏损10%概率p13q(Ⅰ)当14p=时,求q的值;(Ⅱ)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p的取值范围;(Ⅲ)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知12p=,16q=,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?给出结果并说明理由.14、(朝阳区2015届高三第二次综合练习)某学科测试中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)若在(Ⅰ)问中被抽出的答卷