多项式乘以多项式

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

整式的乘法(2)多项式乘以多项式1、单项式乘以单项式的运算法则:2、单项式乘以多项式的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?abmn可以用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?abmn方法一:这块花园现在长(a+b)米,宽(m+n)米,因而面积为(a+b)(m+n)米2.方法四:这块花园现在是由四小块组成,它们的面积分别为:am米2、an米2、bm米2、bn米2,故这块绿地的面积为(am+an+bm+bn)米2.方法二:从上下两块组成来看,其面积为m(a+b)+n(a+b)米2.方法三:从左右两块组成来看,其面积为a(m+n)+b(m+n)米2.问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米,求扩地以后的面积是多少?abmn(a+b)(m+n)=a(m+n)+b(m+n)=m(a+b)+n(a+b)=(am+an+bm+bn)这四种方法有什么关系呢?(a+b)(m+n)=am+an+bm+bn等式的左边(a+b)(m+n)是两个多项式(a+b)与(m+n)相乘,把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,(a+b)(m+n)=a(m+n)+b(m+n)----单×多=am+an+bm+bn----单×单你能总结出多项式乘以多项式的运算法则吗?1234(a+b)(m+n)=am1234+an+bm+bn多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。(a+b)(m+n)=am+an+bm+bn多项式与多项式相乘例:计算(1)(3x+1)(x+2)(2)(x-8y)(x-y)(3)(x+y)(x2-xy+y2)解:(1)原式=(3x)·x+(3x)·2+1·x+1×2=3x2+6x+x+2=3x2+7x+2(2)原式=x2-xy-8xy+8y2=x2-9xy+8y2(3)原式=x3-x2y+xy2+x2y-xy2+y3=x3+y3多项式与多项式相乘时,多项式的每一项都应该带上它前面的正负号。最后结果要合并同类项。解:(1)原式=2x2+6x+x+3=2x2+7x+3(2)原式=m2-3mn+2mn-6n2=m2-mn-6n2(3)原式=(a-1)(a-1)=a2-a-a+1=a2-2a+1(4)原式=a2-3ab+3ab-9b2=a2-9b2(5)原式=2x3-8x2-x+4(6)原式=2x3-5x2+6x-15注意:1、必须做到不重复,不遗漏.2、注意确定积中每一项的符号.3、结果应化为最简式(易错点)。{合并同类项}.感受新知八年级数学++++++计算:(1)(x+2y)(3a+2b)解:原式=(x·3a)(x·2b)(2y·2b)(2y·3a)=3ax+2bx+6ay+4by(2)(2x–3)(x+4)解:原式=(2x·x)(2x·4)(-3·x)(-3·4)=2x2+8x+(-3x)+(-12)=2x2+5x-12(3)(-2x+3y)(x2-xy+2y2)解:原式=()+[]+[]+()+[]+()-2x·x2(-2x)·(-xy)(-2x)·2y23y·x23y·(-xy)3y·2y2=-2x3+2x2y-4xy2+3x2y-3xy2+6y3=-2x3+5x2y-7xy2+6y3能力提升先化简,再求值;12242xxx其中x=2,y=-1解:原式=yxxyxxxx2544351212xyx1552xyx10162142xxyx1552xyx1016227xxy51当x=2,y=-1时47原式12511102819xp+qpq根据上述结论计算:(1)(x+1)(x+2)=(2)(x+1)(x-2)=(3)(x-1)(x+2)=(4)(x-1)(x-2)=x2+3x+2x2-x-2x2+x-2x2-3x+216/13我的收获:本节课我学会了……单项式乘以多项式的依据是什么?法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+b)(m+n)=am+an+bm+bn注意:多项式与多项式相乘时,多项式的每一项都应该带上它前面的正负号。多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定各项的符号。(x+p)(x+q)=x+(p+q)x+p·q2特殊公式:

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功