注意事项:1.2015年河北高考理科数学卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷3至5页。2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。3.全部答案在答题卡上完成,答在本试题上无效。4.考试结束后,将本试题和答题卡一并交回。选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设复数z满足=i,则|z|=(A)1(B)(C)(D)2(2)sin20°cos10°-con160°sin10°=(A)(B)(C)(D)(3)设命题P:nN,,则P为(A)nN,(B)nN,≤(C)nN,≤(D)nN,=(4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648(B)0.432(C)0.36(D)0.312(5)已知M(x0,y0)是双曲线C:上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是(A)(-,)(B)(-,)(C)(,)(D)(,)(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(A)14斛(B)22斛(C)36斛(D)66斛(7)设D为ABC所在平面内一点,则(A)(B)(C)(D)(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(),k(b)(),k(C)(),k(D)(),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5(B)6(C)7(D)8(10)的展开式中,的系数为(A)10(B)20(C)30(D)60(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20,则r=(A)1(B)2(C)4(D)812.设函数f(x)=ex(2x-1)-ax+a,其中a1,若存在唯一的整数x0,使得f(x0)0,则a的取值范围是()A.[,1)B.[)C.[)D.[,1)22015年河北高考理科数学试题第II卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若函数f(x)=xln(x+)为偶函数,则a=(14)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为.(15)若x,y满足约束条件,则的最大值为.(16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)Sn为数列{an}的前n项和.已知an0,(Ⅰ)求{an}的通项公式:(Ⅱ)设,求数列}的前n项和(18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC(2)求直线AE与直线CF所成角的余弦值(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x1-)2(w1-)2(x1-)(y-)(w1-)(y-)46.656.36.8289.81.61469108.8表中w1=1,,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(1)年宣传费x=49时,年销售量及年利润的预报值是多少?(2)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1v1),(u2v2)……..(unvn),其回归线v=u的斜率和截距的最小二乘估计分别为:(20)(本小题满分12分)在直角坐标系xoy中,曲线C:y=与直线y=kx+a(a0)交于M,N两点,(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.(21)(本小题满分12分)已知函数f(x)=(Ⅰ)当a为何值时,x轴为曲线的切线;(Ⅱ)用表示m,n中的最小值,设函数,讨论h(x)零点的个数请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.(22)(本题满分10分)选修4-1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=CE,求∠ACB的大小.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中.直线:x=-2,圆:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)若直线的极坐标方程为,设与的交点为,,求△C2MN的面积(24)(本小题满分10分)选修4—5:不等式选讲已知函数=|x+1|-2|x-a|,a0.(Ⅰ)当a=1时,求不等式f(x)1的解集;(Ⅱ)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围