2.5平面向量应用举例【很好】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.5平面向量应用举例1.向量在几何中的应用2.向量在物理中的应用解决的问题:比如:距离、平行、三点共线、垂直、夹角等几何问题解决的问题:比如:力、速度等物理问题2.5.1平面几何的向量方法例1:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形两条对角线的长度与两条邻边的长度之间的关系吗?ABDCABCD特殊化)(22222ADABDBAC探索:中,该关系是否依然成立?ABCD一般化ab22222ADABDBAC即证例1、证明平行四边形四边平方和等于两对角线平方和ABDC已知:平行四边形ABCD。求证:222222BDACDACDBCABbADaAB,解:设,则baDBbaACaDAbBC;,,分析:因为平行四边形对边平行且相等,故设其它线段对应向量用它们表示。bADaAB,)(2222222baDACDBCAB2222babaBDAC222222222222bababbaabbaa∴222222BDACDACDBCAB例2如图,ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?ABCDEFRT猜想:AR=RT=TC解:设则,,,ABaADbARrACab由于与共线,故设ARAC(),rnabnR又因为共线,所以设EREB与12()ERmEBmab因为所以ARAEER1122()rbmab1122()()nabbmab因此ABCDEFRT102()()mnmanb即,ab由于向量不共0102nmmn线,1解得:n=m=3111333,,ARACTCACRTAC所以同理于是故AT=RT=TCABCDEFRT(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;常设基底向量或建立向量坐标。(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何元素。用向量方法解决平面几何问题的“三步曲”:简述:形到向量向量的运算向量和数到形练习1、证明直径所对的圆周角是直角ABCO如图所示,已知⊙O,AB为直径,C为⊙O上任意一点。求证∠ACB=90°分析:要证∠ACB=90°,只须证向量,即。CBAC0CBAC解:设则,由此可得:bOCaAO,baCBbaAC,.ACCBabab2222baba022rr即,得∠ACB=90°0CBAC思考:能否用向量坐标形式证明?ab2.5.2向量在物理中的应用例1:同一平面内,互成120ْ的三个大小相等的共点力的合力为零。BO120ºabcDCA证:如图,用a,b,c表示这3个共点力,且a,b,c互成120°,模相等,按照向量的加法运算法则,有:a+b+c=a+(b+c)=a+OD又由三角形的知识知:三角形OBD为等边三角形,故a与OD共线且模相等所以:OD=-a,即有:a+b+c=0例2:在生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂夹角越小越省力!你能从数学的角度解释这个现象吗?分析:上述的问题跟如图所示的是同个问题,抽象为数学模型如下:F2θF1FG用向量F1,F2,表示两个提力,它们的合向量为F,物体的重力用向量G来表示,F1,F2的夹角为θ,如右图所示,只要分清F,G和θ三者的关系,就得到了问题得数学解释!θF1FGF2cos2θ探究:(1)θ为何值时,最小,最小值是多少?F1(2)能等于吗?为什么?F1GF1解:不妨设=,由向量的平行四边形法则,力的平衡以及直角三角形的知识,可以知道:=(*)通过上面的式子,有:当θ由0º到180º逐渐变大时,由0º到90º逐渐变大,的值由大逐渐变小,因此:由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力!F2F1Gcos2θ2θcos2θ2F1答:在(*)式中,当θ=0º时,最大,最小且等于cos2θF1G2答:在(*)中,当=即θ=120º时,=cos2θ12F1GF2小结:(1)、为了能用数学描述这个问题,我们要先把这一物理问题转化成数学问题。如上题目,只考虑绳子和物体的受力平衡,画出相关图形!(2)、由物理中的矢量问题化成数学中的向量问题,用向量的有关法则解决问题!(3)、用数学的结果解决物理问题,回答相关的物理现象。练习;(1)如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N,则每根绳子的拉力是————。120º10NlPQ瀑布lθQ,60m(2)如图,今有一艘小船位于d=60m宽的河边P处,从这里起,在下游=80m处河流有一处瀑布,若河水的流速方向由上游指向下游(与河岸平行),水速大小为5m/s为了使小船能安全过河,船的划速不能小于多少?当划速最小时,划速方向如何?l(2)如图,今有一艘小船位于d=60m宽的河边P处,从这里起,在下游=80m处河流有一处瀑布,若河水的流速方向由上游指向下游(与河岸平行),水速大小为5m/s为了使小船能安全过河,船的划速不能小于多少?当划速最小时,划速方向如何?l(2)如图,今有一艘小船位于d=60m宽的河边P处,从这里起,在下游=80m处河流有一处瀑布,若河水的流速方向由上游指向下游(与河岸平行),水速大小为5m/s为了使小船能安全过河,船的划速不能小于多少?当划速最小时,划速方向如何?lP瀑布lθV船V水V合的方向θPQ从图上看,哪个速度(向量的模)最小?分析:用向量来分别表示河流的水流速度、船速和它们的合速度为、和,由题意,船的实际速度为向量其方向为临界方向,船只要朝着这个方向行驶,它就不会掉下瀑布,如(右)图所示:PQV船V水V合=+V船V水V合解:由题意知:其方向为临界方向,设和夹角为θ,则最小划速为:sinθ==所以:最小的船速应为:V船V水V合=+PQV水V合v船=v水sinθv船22ldd5380606022=5×sinθ=5×=3(m/s)53提问:表示划船速度的向量怎样画?Q

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功