常微分方程习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

习题2.2求下列方程的解1.dxdy=xysin解:y=edx(xsinedxcdx)=ex[-21ex(xxcossin)+c]=cex-21(xxcossin)是原方程的解。2.dtdx+3x=et2解:原方程可化为:dtdx=-3x+et2所以:x=edt3(et2edt3cdt)=et3(51et5+c)=cet3+51et2是原方程的解。3.dtds=-stcos+21t2sin解:s=etdtcos(t2sin21edtdt3c)=etsin(cdttettsincossin)=etsin(cetettsinsinsin)=1sinsintcet是原方程的解。4.dxdynxxeynx,n为常数.解:原方程可化为:dxdynxxeynx)(cdxexeeydxxnnxdxxn)(cexxn是原方程的解.5.dxdy+1212yxx=0解:原方程可化为:dxdy=-1212yxxdxxxey212(cdxedxxx221))21(ln2xe)(1ln2cdxexx=)1(12xcex是原方程的解.6.dxdy234xyxx解:dxdy234xyxx=23yx+xy令xyu则uxydxdy=udxdux因此:dxduxu=2ux21udxdudxduu2cxu331cxxu33(*)将xyu带入(*)中得:3433cxxy是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dxPxdxxPxdxdyyxdxxdyyxdxxPxQxxxeexeQxdxcxP(x)dx232解:方程的通解为:y=e=(x+1)(*(x+1)dx+c)=(x+1)((x+23221(1)()211,()(())dyyxcdyydxxydxxydyyyQyyyeyQydyc2243P(y)dyP(y)dyP(y)dy1)dx+c)=(x+1)即:2y=c(x+1)+(x+1)为方程的通解。8.=x+y解:则P(y)=e方程的通解为:x=ee2331*)22ydycyycyy=y(=即x=+cy是方程的通解,且y=0也是方程的解。()()()19.,1),()(())01adxPxdxaxPxdxPxdxaadyayxadxxxaxPxQxxxeexeeQxdxcaa为常数解:(方程的通解为:y=1x+1=x(dx+c)xx当时,方程的通解为y=x+ln/x/+c当时,方程01aaaa的通解为y=cx+xln/x/-1当,时,方程的通解为x1y=cx+-1-3331()()()310.11(),()1(())(*)dxPxdxxPxdxPxdxdyxyxdxdyyxdxxPxQxxxeexeeQxdxcxxdxccxcx33解:方程的通解为:  y=1=xx=4x方程的通解为: y=4223333233232332311.2()2()()2,()2(())((2)pxxdxxpxpxxdyxyxydxxyxydxxyxydxxyxdxyzdzxzxdxPxxQxxedxeeedxedxQxdxcex23-2xdy解:两边除以ydydy令方程的通解为:z==e222)11)1,0xxdxcceycey22=x故方程的通解为:(x且也是方程的解。22212111()()222ln112.(ln2)424ln2ln2ln22ln2ln(),()(())ln1(())(PxdxPxdxdxdxxxcxyxydxxdyxdyxyydxxxydyxyydxxxdyxydxxxyzdzxzdxxxxPxQxxxzeeQxdxcxzeedxcxx解:两边除以令方程的通解为:222ln())ln1424ln1:()1,424xdxcxxcxxcxyx方程的通解为且y=0也是解。13222(2)2122xydyyxdxdyyxydxxyxy这是n=-1时的伯努利方程。两边同除以1y,212dyyydxx令2yz2dzdyydxdx22211dzyzdxxxP(x)=2xQ(x)=-1由一阶线性方程的求解公式22()dxdxxxzeedxc=2xxc22yxxc1423ydyexdxx两边同乘以ye22()3yyydyexeedxx令yezydzdyedxdx222233dzzxzzzdxxxx这是n=2时的伯努利方程。两边同除以2z22131dzzdxxzx令1Tz21dTdzdxzdx231dTTdxxxP(x)=3xQ(x)=21x由一阶线性方程的求解公式3321()dxdxxxTeedxcx=321()2xxc=1312xcx131()12zxcx131()12yexcx2312yyxecex2312yxxec15331dydxxyxy33dxyxyxdy这是n=3时的伯努利方程。两边同除以3x3321dxyyxdyx令2xz32dzdxxdydy3222dzyydyx=322yzyP(y)=-2yQ(y)=32y由一阶线性方程的求解公式223(2)ydyydyzeyedyc=223(2)yyeyedyc=221yyce222(1)1yxyce22222(1)yyyxeycee22222(1)yexxycx16y=xe+0()xytdt()xdyeyxdxxdyyedxP(x)=1Q(x)=xe由一阶线性方程的求解公式11()dxdxxyeeedxc=()xxxeeedxc=()xexc0()()xxxxexceexcdxc=1y=()xexc17设函数(t)于∞t∞上连续,'(0)存在且满足关系式(t+s)=(t)(s)试求此函数。令t=s=0得(0+0)=(0)(0)即(0)=2(0)故(0)0或(0)1(1)当(0)0时()(0)()(0)ttt即()0t(t∞,∞)(2)当(0)1时'0()()()limtttttt=0()()()limttttt=0()(()1)limtttt=0(0)(0)()limtttt='(0)()t于是'(0)()dtdt变量分离得'(0)ddt积分'(0)tce由于(0)1,即t=0时11=0cec=1故'(0)()tte20.试证:(1)一阶非齐线性方程(2.28)的任两解之差必为相应的齐线性方程(2.3)之解;(2)若()yyx是(2.3)的非零解,而()yyx是(2.28)的解,则方程(2.28)的通解可表为()()ycyxyx,其中c为任意常数.(3)方程(2.3)任一解的常数倍或任两解之和(或差)仍是方程(2.3)的解.证明:()()dyPxyQxdx(2.28)()dyPxydx(2.3)(1)设1y,2y是(2.28)的任意两个解则11()()dyPxyQxdx(1)22()()dyPxyQxdx(2)(1)-(2)得1212()()dyyPxyydx即12yyy是满足方程(2.3)所以,命题成立。(2)由题意得:()()dyxPxydx(3)()()()()dyxPxyxQxdx(4)1)先证ycyy是(2.28)的一个解。于是34c得()()()cdydycPxyPxyQxdxdx()()()()dcyyPxcyyQxdx故ycyy是(2.28)的一个解。2)现证方程(4)的任一解都可写成cyy的形式设1y是(2.28)的一个解则11()()dyPxyQxdx(4’)于是(4’)-(4)得11()()()dyyPxyydx从而()1Pxdxyycecy即1yycy所以,命题成立。(3)设3y,4y是(2.3)的任意两个解则33()dyPxydx(5)44()dyPxydx(6)于是(5)c得33()cdycPxydx即33()()()dcyPxcydx其中c为任意常数也就是3ycy满足方程(2.3)(5)(6)得3434()()dydyPxyPxydxdx即3434()()()dyyPxyydx也就是34yyy满足方程(2.3)所以命题成立。21.试建立分别具有下列性质的曲线所满足的微分方程并求解。(5)曲线上任一点的切线的纵截距等于切点横坐标的平方;(6)曲线上任一点的切线的纵截距是切点横坐标和纵坐标的等差中项;解:设(,)pxy为曲线上的任一点,则过p点曲线的切线方程为'()YyyXx从而此切线与两坐标轴的交点坐标为(,0),(0,')'yxyxyy即横截距为'yxy,纵截距为'yxy。由题意得:(5)2'yxyx方程变形为2dyxyxdx1dyyxdxx于是11()(())dxdxxxyexedxclnln(())xxexedxc1(())xxxdxc1(())xxdxcx()xxc2xcx所以,方程的通解为2yxcx。(6)'2xyyxy方程变形为22dyyxxdx1122dyydxx于是11()221(())2dxdxxxyeedxc11lnln221(())2xxeedxc11221(())2xxdxc11221(())2xxdxc1122()xxc12xcx所以,方程的通解为12yxcx。22.求解下列方程。(1)0')1(2xyyx解:1111'22xyxxyy)11(12122cexeydxxxdxxx=]/1/111[/1/2122212cdxxxx=]/1/[/1/232212cxdxx=cxx/1/2(2)'3sincossin0yxxyx2sinsincoscosdyyxdxxxxP(x)=1sincosxxQ(x)=2sincosxx由一阶线性方程的求解公式112sincossincossin()cosdxdxxxxxxyeedxcx=sin(sin)cosxxdxcx=sin(cos)cosxxcx=sintgxcx

1 / 14
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功