§9.2二重积分的计算一二重积分在直角坐标系中的计算二二重积分在极坐标系中的计算三二重积分的应用举例四二重积分的换元公式一二重积分在直角坐标系中的计算1积分区域D为x型区域)()(,21xyxbxaoxyba)(1xy)(2xyDoyxzab),(yxfzDdyxf),(xbadxxA)()()(21),()(xxdyyxfxA)(1x)(2xdxdyyxfbaxx]),([)()(21baxxdyyxfdx)()(21),((先后的二次积分)yx)(xA2积分区域D为y型区域)()(,21yxydycoxycd)(2yx)(1yxDdyxf),(dcyydxyxfdy)()(21),((先后的二次积分)xy例1求,)(Ddxy其中D是由曲线21xy与直线xy及y轴所围成的闭区域。Ddxy)(解21220)(xxdyxydx2202)121(dxxx2202321(3142)x312oxy22例2求,Dxyd其中D是由曲线xy2与直线2xy所围成的闭区域。oxy)2,4()1,1(21Dxyd解2212yyxdxydy21523)44(21dyyyyy845oxy)2,4()1,1(Dxyd4xxydyxdx10xxydyxdx24104132)45(21dxxxx845例3交换下列二次积分的顺序(1)xxdyyxfdx220),((2)xxxdyyxfdxdyyxfdx20212010),(),(2解(1)oxy242xxdyyxfdx220),(yydxyxfdy220),(2242),(ydxyxfdy(2)oxy211xxxdyyxfdxdyyxfdx20212010),(),(2yydxyxfdy211102),(xy222xxy例4计算.sin110ydxxxdy解110sinydxxxdyxdydxxx010sin10sinxdx1cos1oxy11二二重积分在极坐标系中的计算点P的极坐标),(ox与直角坐标),(yx之间的关系式ycosxsiny(极坐标变换公式)PDdyxf),()sin,cos(fDdd(先后的二次积分)例5将Ddyxf),(化为极坐标系下的二次积分,其中.11:2xyxDoxy解:D,201sincos1Ddyxf),(1sincos120)sin,cos(dfd例6求,)(Ddyx其中,22:22yxyxD.xy解oxy,434:Dxy)sin(cos20Ddyx)()sin(cos202434)sin(cosdd4343)sin)(cossin(cos38d4344)sin(cos3238例7求,22Ddyx其中,2:22xyxD.xy解oxy,42:Dcos20Ddyx22cos20242dd423cos38d422sin)sin1(38d423)sin31(sin38921016三二重积分的应用举例例8求区域,1:22yxD,222xyx0y的面积。oxy解DdA1030ddcos2023dd6232cos2d623)2cos1(d6436433例9求两个圆柱面)0(,222222RRzxRyx所围成的立体的体积。oxyz22xRzD解,0,0,:222yxRyxD记则dxRVD2282200228xRRdydxxRRdxxR02283316R例10设)(xf可微,且,1)0(,0)0(ff求dyxftDt)(1lim2230其中.:222tyxD解dyxfD)(22tdfd020)(tdf0)(2dyxftDt)(1lim2230300)(lim2tdftt203)(lim2tttftttft)(lim320tftft)0()(lim320)0(32f32例11计算积分.02dxex解dxedxebxbx0022lim记,)(02dxebIbx则dxedxebIbxbx00222)(dyedxebybx0022Dyxdxdye)(22其中.0,0:bybxDoxybbb2b2记,0,0,:2221yxbyxD,0,0,2:2222yxbyxD则22222122)()()(DyxDyxDyxdxdyedxdyedxdye200)(2122bDyxdeddxdye)1(42be2020)(2222bDyxdeddxdye)1(422be1D2D2222012)(12bbxbedxebIe22bdxedxebxbx0022lim2四二重积分的换元公式设),(),(vuyvux,则Ddxdyyxf),()),(),,((vuvufdudvuvD),(),(vuyx其中vyuyvxuxvuyx),(),((Jacobi行列式)如:cosxsinyyyxxvuyx),(),(cossinsincosDdxdyyxf),()sin,cos(fDdd