第八章立体几何专题3立体几何综合问题(文科)【三年高考】1.【2017课标II,文18】如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,01,90.2ABBCADBADABC(1)证明:直线//BC平面PAD;(2)若△PAD面积为27,求四棱锥PABCD的体积.2.【2017课标3,文19】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.3.【2017天津,文17】如图,在四棱锥PABCD中,AD平面PDC,ADBC∥,PDPB,1AD,3BC,4CD,2PD.(I)求异面直线AP与BC所成角的余弦值;(II)求证:PD平面PBC;学+科网(Ⅲ)求直线AB与平面PBC所成角的正弦值.4.【2016高考新课标1文数】平面过正文体ABCD—A1B1C1D1的顶点A11//CBD平面,ABCDm平面,11ABBAn平面,则m,n所成角的正弦值为()(A)32(B)22(C)33(D)135.【2016高考北京文数】如图,在四棱锥ABCDP中,PC平面ABCD,,ABDCDCAC∥(I)求证:DCPAC平面;(II)求证:PABPAC平面平面;(III)设点E为AB的中点,在棱PB上是否存在点F,使得//平面CF?说明理由.6.【2016高考天津文数】如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,AE=6,DE=3,∠BAD=60º,G为BC的中点.(Ⅰ)求证://FG平面BED;(Ⅱ)求证:平面BED⊥平面AED;(Ⅲ)求直线EF与平面BED所成角的正弦值.[来源:Z#xx#k.Com]7.【2016高考新课标1文数】如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.(I)证明G是AB的中点;(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.PABDCGE8.【2015高考浙江,文7】如图,斜线段与平面所成的角为60,为斜足,平面上的动点满足30,则点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支9.【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF平面BEG10.【2015高考重庆,文20】如题(20)图,三棱锥P-ABC中,平面PAC平面ABC,ABC=2,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF//BC.(Ⅰ)证明:AB平面PFE.(Ⅱ)若四棱锥P-DFBC的体积为7,求线段BC的长.题(20)图ACBPDEF【2017考试大纲】【三年高考命题回顾】纵观前三年各地高考试题,高考对立体几何的考查,主要考查学生的化归与转化能力、空间想象能力以及基本运算能力.线线垂直的判定、线面垂直的判定、面面垂直的判定与性质、线面角等是高考的热点,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题不仅考查以上内容,同时还考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.而直线与平面平行的判定,以及平面与平面平行的判定高考大题没涉及,而在小题中考查,直线与平面平行的判定,以及平面与平面平行的判定是高考的热点.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,线线垂直的判定、线面垂直的判定、面面垂直的判定与性质、几何体的体积,表面积,几何体的高等是高考的热点,客观题主要考查线面垂直、面面垂直的判定与性质,考查线面角的概念及求法;而主观题以直线与平面平行的判定,以及平面与平面平行的判定是高考的热点,故预测2018年高考,仍以锥体为几何背景,第一问以线面垂直,面面垂直为主要考查点,第二问仍以求体积或表面积为主,突出考查空间想象能力和逻辑推理能力,以及分析问题、解决问题的能力.复习建议:空间图形中的角与距离,先根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围.异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°.平面图形的翻折与空间图形的展开问题,要对照翻折(或展开)前后两个图形,分清哪些元素的位置(或数量)关系改变了,哪些没有改变.[来源:学&科&网]【2018年高考考点定位】对立体几何中的角与距离,主要以选择题的方式进行考查,而综合性问题,主要在解答题中考查,一般第一问证明平行与垂直,第二问求体积,面积,或涉及一些探索性命题,难度不算太大,重点考查学生的空间想象能力、逻辑推理能力以及分析问题、解决问题的能力.学*科网【考点1】空间角,距离的求法【备考知识梳理】1.空间的角(1)异面直线所成的角:如图,已知两条异面直线,ab,经过空间任一点O作直线','aabb.则把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).异面直线所成的角的范围是0,2.(2)平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行,或在平面内,则它们所成的角是0的角.直线与平面所成角的范围是0,2.(3)二面角的平面角:如图在二面角l的棱上任取一点O,以点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则AOB叫做二面角的平面角.二面角的范围是0,.(4)等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.3.空间距离:(1)两条异面直线的距离:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;常有求法①先证线段AB为异面直线ba,的公垂线段,然后求出AB的长即可.②找或作出过b且与a平行的平面,则直线a到平面的距离就是异面直线ba,间的距离.③找或作出分别过ba,且与b,a分别平行的平面,则这两平面间的距离就是异面直线ba,间的距离.④根据异面直线间的距离公式EF=cos2222mnnmd(“±”符号由实际情况选定)求距离.(2)点到平面的距离:点P到直线a的距离为点P到直线a的垂线段的长,常先找或作直线a所在平面的垂线,得垂足为A,过A作a的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a的距离.在直角三角形PAB中求出PB的长即可.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面的斜线上两点A,B到斜足C的距离AB,AC的比为nm:,则点A,B到平面的距离之比也为nm:.特别地,AB=AC时,点A,B到平面的距离相等;③体积法(3)直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离;(4)平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离.【规律方法技巧】1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角.(1)异面直线所成的角的范围是]2,0(.求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用三角形来求角;④补形法:将空间图形补成熟悉的、完整的几何体,这样有利于找到两条异面直线所成的角θ.(2)直线与平面所成的角的范围是]2,0[.求线面角方法:①利用面面垂直性质定理,巧定垂足:由面面垂直的性质定理,可以得到线面垂直,这就为线面角中的垂足的确定提供了捷径.学@科网②利用三棱锥的等体积,省去垂足,在构成线面角的直角三角形中,其中垂线段尤为关键.确定垂足,是常规方法.可是如果垂足位置不好确定,此时可以利用求点面距常用方法---等体积法.从而不用确定垂足的位置,照样可以求出线面角.因为垂线段的长度实际就是点面距h,利用三棱锥的等体积,只需求出h,然后利用斜线段长hsin进行求解.③妙用公式,直接得到线面角课本习题出现过这个公式:21coscoscos,如图所示:21,,OBCABOABC.其中1为直线AB与平面所成的线面角.这个公式在求解一些选择填空题时,可直接应用.但是一定要注意三个角的位置,不能张冠李戴.(3)确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上;③两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上;④利用某些特殊三棱锥的有关性质,确定顶点在底面上的射影的位置:a.如果侧棱相等或侧棱与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的外心;b.如果顶点到底面各边距离相等或侧面与底面所成的角相等,那么顶点落在底面上的射影是底面三角形的内心(或旁心);c.如果侧棱两两垂直或各组对棱互相垂直,那么顶点落在底面上的射影是底面三角形的垂心;(4)二面角的范围0,,解题时要注意图形的位置和题目的要求.求二面角的方法:①直接法.直接法求二面角大小的步骤是:一作(找)、二证、三计算.即先作(找)出表示二面角大小的平面角,并证明这个角就是所求二面角的平面角,然后再计算这个角的大小.用直接法求二面角的大小,其关键是确定表示二面角大小的平面角.而确定其平面角,可从以下几个方面着手:①利用三垂线定理(或三垂线定理的逆定理)确定平面角,自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角;;②利用与二面角的棱垂直的平面确定平面角,自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角;③利用定义确定平面角,在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角;②射影面积法.利用射影面积公式cos=SS;此方法常用于无棱二面角大小的计算;对于无棱二面角问题还有一条途径是设法作出它的棱,作法有“平移法”“延伸平面法”等.2.求距离的关键是化归.即空间距离向平面距离化归,具体方法如下:(1)求空间中两点间的距离,一般转化为解直角三角形或斜三角形.(2)求点到直线的距离和点到平面的距离,一般转化为求直角三角形斜边上的高;或利用三棱锥的底面与顶点的轮换性转化为三棱锥的高,即用体积法.(3)求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形.若表示距离的线段不容易找出或作出,可用体积等积法计算求之.异面直线上两点间距离公式,如果两条异面直线a、b所成的角为,它们的公垂线AA′的长度为d,在a上有线段A′E=m,b上有线段AF=n,那么EF=cos2222mnnmd(“±”符号由实际情况选定)3.求空间中线面的夹角或距离需注意以下几点:①注意根据定义找出或