人教版高一数学《两角差的余弦公式》的说课稿【小编寄语】查字典数学网小编给大家整理了人教版高一数学《两角差的余弦公式》的说课稿,希望能给大家带来帮助!关于《两角差的余弦公式》的说课稿各位领导、各位老师:大家好!今天我说课的题目是《两角差的余弦公式》。我计划从教材背景、教学目标、教学方法、教学过程、教学评价等方面来谈谈我对本节课的理解。背景分析1、教材所处的地位和作用:《两角差的余弦公式》是新课标人教版数学必修四第三章第一课时的教学内容,是本模块第一章《三角函数》和第二章《平面向量》相关知识的延续和拓展。其中心任务是通过已学知识,探索建立两角差的余弦公式。它不仅是前面已学的诱导公式的推广,也是后面其它和(差)角公式推导的基础和核心,具有承前启后的作用,是本章的重点内容之一。2、重点,难点以及确定的依据:对本节课来说,学生最大的困惑在于如何得到公式.所以,本节课的教学重点是:两角差的余弦公式的探究和应用;教学难点是:两角差的余弦公式的由来及证明;引导学生通过主动参与,独立探索。教学目标设计(1)知识与技能:本节课的知识技能目标定位在公式的向量法证明和应用上;学会运用分类讨论思想完善证明;学会正用、逆用、变用公式;学会运用整体思想,抓住公式的本质.在新旧知识的冲撞过程中,让学生自主地对知识进行重组、构建,形成属于自己的知识结构体系.(2)过程与方法:创设问题情景,调动学生已有的认知结构,激发学生的问题意识,展开提出问题、分析问题、解决问题的学习活动,让学生体会从“特殊”到“一般”的探究过程;在探究过程中体会化归、数形结合等数学思想;在公式的证明过程中,培养学生反思的好习惯;在公式的理解记忆过程中,让学生发现数学中的简洁、对称美;在公式的运用过程中,培养学生严谨的思维习惯和自我纠错能力.(3)情感、态度与价值观:体验科学探索的过程,鼓励学生大胆质疑、大胆猜想,培养学生的“问题意识”,使学生感受科学探索的乐趣,激励勇气,培养创新精神和良好的团队合作意识.通过对猜想的验证,对公式证明的完善,培养学生实事求是的科学态度和科学精神.教法设计1、学情分析:学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平.教学手段:(1)从知识的认知程序上看,老师看问题从整体到局部,而学生却是从局部到整体。本节课尝试将“带着知识走向学生”的接受式教学模式转变为“带着学生走向知识”的探究式教学模式,充分尊重学生的主体地位.(2)本节课的教法采用了“一个主题两种教学”的设计模式.一个主题:公式探究与应用,两种教学:显形教学(知识能力教学)、隐性教学(情商培养),实践两种教学相互促进的人性化教学理念.(3)在课堂上营造民主、开放、平等的教学氛围,注重教学评价的多元性,将简单的结果评价上升为对过程的评价;将一味的知识评价拓展为能力评价,突出学生的主体性,实现显形教学与隐性教学的双重评价,为全面发展学生打下基础.(4)利用几何画板,通过计算机技术,给学生提供一种验证猜想合理性的途径.(教学媒体设计)课堂结构设计:引入课题,提出猜想,实验探究,严谨证明,例题训练,课堂小结教学过程设计1、引入课题:例:如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F与水平方向的夹角为60°,且大小为10N,在力F的作用下物体沿斜坡运动了3m,求力F作用在物体上的功W.解:W==30.提问:1、解决问题需要求什么?2、你能找到哪些与有关的条件?3、能否利用这些条件求出?如果能,提出你的猜想.4、怎样检验这些猜想是否正确?【设计意图】生活实例引入,体现数学与实际生活的联系,也与物理(功的定义)、哲学(透过现象看本质)等相关学科相联系,增强学生的应用意识,激发学生的学习热情,同时也让学生体会数学知识的产生、发展过程.2、提出猜想:从特殊情况去猜测公式的结构形式.令令分析:可见,我们的公式的形式应该与均有关系?他们之间存在怎样的代数关系呢?请同学们根据下表中数据,相互交流讨论,提出你的猜想.用具体值检验猜想的合理性.令则=三角函数三角函数值猜想:【设计意图】鼓励学生发挥想象力,大胆猜测,然后再去验证其合理性,增强学生探索问题、挑战困难的勇气.3、实验探究:【设计意图】让学生用几何画板进行数学实验,激起学生的好奇心和探究欲望,使学生体会到数学的系统演绎性和实验归纳性的两个侧面.4、严谨证明:(利用向量)前一章我们刚刚学习完向量,并用向量知识解决了相关的几何问题,这里,我们能否用向量知识来推导两角差的余弦公式呢?我们来仔细观察猜想的结构,我们在什么地方见到过类似结构?在向量部分,求角的余弦有什么方法吗?(学生:向量的数量积!)证明:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角,它们终边与单位圆O的交点分别为A、B,则:=,==∴=(0≤≤)思考:1、作为两向量的夹角,有没有限制条件?2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)【设计意图】让学生经历用向量知识解出一个数学问题的过程,体会向量方法在数学探究过程中的简洁性。思考:1、作为两向量的夹角,有没有限制条件?2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)推广完善:令为、的夹角,则无论哪种情况,都有小结:两角差的余弦公式:(其中为任意角,简记为)思考:请同学们仔细观察一下公式的结构,说说公式的结构有什么特点?应怎样记忆?(对学生的回答给予及时肯定)【设计意图】引导学生关注两个向量的夹角θ与α-β的联系与区别,并通过观察和讨论,增强学生用数形结合、分类讨论的方法解决问题的意识,感受数学思维的严谨性.(介绍单位圆的三角函数线法)除了以上的证明方法,是否还有其它证法呢?我们发现,这里涉及的是三角函数,是这个角的余弦问题,那我们还能不能考虑在单位圆里用三角函数线来推导呢?请同学们课后自己在单位圆中画出、,并考虑如何用角的正弦线、余弦线来表示的余弦线?这个问题作为课后思考题,请同学们课下相互讨论,共同探索。【设计意图】根据教学实际,对教材进行适当安排,把单位圆三角函数线证法留作课后学生思考,为学生的课后探讨留有空间。5、例题训练:1、解决引例中的问题.2、P127练习:已知,求.(运用公式时应根据角的范围,正确确定两角正、余弦值的范围)公式的逆用:.4、公式活用:.【设计意图】例1让学生运用所学解决实际问题;例2利用变式突破学生在运用公式过程中的易错点;例3对逆用公式解题加深认识;例4活用公式,加深学生对公式中两角形式变化的认识,强化整体思想。6:课堂小结:公式探索的一般步骤;公式的结构和功能;公式的运用应注意的问题。7、作业:P127练习1、2、3;.【设计意图】让学生通过自己小结,反思学习过程,加深对公式的推导和应用过程的理解,促进知识的内化;然后用作业巩固本节课所学知识。(附:板书设计)§3.1.1两角差的余弦公式一、公式二、证明引例:例2:例3:4:小结:教学评价分析诊断性评价:1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。预期效果:1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.以上是我对这节课的浅显认识和处理,不到之处见谅。