云南省昆明市2017届高三数学仿真试卷理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={y|y=x2,x∈R},则()A.A=BB.B⊊AC.A⊊BD.A∩B=∅2.cos70°sin50°﹣cos200°sin40°的值为()A.B.C.D.3.命题p:∀x>2,2x﹣3>0的否定是()A.∃x0>2,B.∀x≤2,2x﹣3>0C.∀x>2,2x﹣3≤0D.∃x0>2,4.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A.pB.1﹣pC.1﹣2pD.﹣p5.若双曲线M:(a>0,b>0)的左、右焦点分别是F1,F2,以F1F2为直径的圆与双曲线M相交于点P,且|PF1|=16,|PF2|=12,则双曲线M的离心率为()A.B.C.D.56.设m、n是两条不同的直线,α、β是两个不同的平面,则m⊥β的一个充分条件是()A.α⊥β且m⊂αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β7.函数(ω>0,)的部分图象如图所示,则φ的值为()A.B.C.D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.9.如果执行如图所示的程序框图,则输出的结果是()A.﹣4B.﹣3C.2D.010.(x2+xy+2y)5的展开式中x6y2的系数为()A.20B.40C.60D.8011.在△ABC所在平面上有一点P,满足,,则x+y=()A.B.C.D.12.设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.实数x,y满足则的最小值为.14.已知函数则f(x)≤2的解集为.15.已知抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l与抛物线C及其准线分别交于P,Q两点,,则直线l的斜率为.16.已知△ABC中,AB=2,AC+BC=6,D为AB的中点,当CD取最小值时,△ABC面积为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.数列{an}和{bn}中,已知,且a1=2,b3﹣b2=3,若数列{an}为等比数列.(Ⅰ)求a3及数列{bn}的通项公式;(Ⅱ)令,是否存在正整数m,n(m≠n),使c2,cm,cn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.18.18、如图,在底面是菱形的四棱锥P﹣ABCD中,∠ABC=60°,PA=PC=1,,E为线段PD上一点,且PE=2ED.(Ⅰ)若F为PE的中点,证明:BF∥平面ACE;(Ⅱ)求二面角P﹣AC﹣E的余弦值.19.某市每年中考都要举行实验操作考试和体能测试,初三(1)班共有30名学生,如图表格为该班学生的这两项成绩,表中实验操作考试和体能测试都为优秀的学生人数为6人.由于部分数据丢失,只知道从这班30人中随机抽取一个,实验操作成绩合格,且体能测试成绩合格或合格以上的概率是.实验操作不合格合格良好优秀体能测试不合格0111合格021b良好1a24优秀1136(Ⅰ)试确定a,b的值;(Ⅱ)从30人中任意抽取3人,设实验操作考试和体能测试成绩都是良好或优秀的学生人数为X,求随机变量X的分布列及数学期望E(X).20.已知圆A:x2+y2+2x﹣15=0和定点B(1,0),M是圆A上任意一点,线段MB的垂直平分线交MA于点N,设点N的轨迹为C.(Ⅰ)求C的方程;(Ⅱ)若直线y=k(x﹣1)与曲线C相交于P,Q两点,试问:在x轴上是否存在定点R,使当k变化时,总有∠ORP=∠ORQ?若存在,求出点R的坐标;若不存在,请说明理由.21.已知函数.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0时,;(Ⅲ)比较三个数:,,e的大小(e为自然对数的底数),请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线C1的参数方程为:(θ为参数),将曲线C1上每一点的纵坐标变为原来的倍(横坐标不变),得到曲线C2,直线l的极坐标方程:.(Ⅰ)求曲线C2的参数方程;(Ⅱ)若曲线C2上的点到直线l的最大距离为,求m的值.23.已知函数f(x)=|x﹣a|﹣|x﹣4|,a∈R.(Ⅰ)当a=﹣1时,求不等式f(x)≥4的解集;(Ⅱ)若∀x∈R,|f(x)|≤2恒成立,求a的取值范围.2017年云南省昆明一中高考数学仿真试卷(理科)(7)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x>1},B={y|y=x2,x∈R},则()A.A=BB.B⊊AC.A⊊BD.A∩B=∅【考点】18:集合的包含关系判断及应用.【分析】先化简集合B,再根据集合的基本关系即可判断.【解答】解:B={y|y=x2,x∈R}={y|y≥0},∵A={x|x>1},∴A⊊B.故选C,2.cos70°sin50°﹣cos200°sin40°的值为()A.B.C.D.【考点】GQ:两角和与差的正弦函数.【分析】由诱导公式,两角和的正弦函数公式化简所求,利用特殊角的三角函数值即可计算得解.【解答】解:cos70°sin50°﹣cos200°sin40°=cos70°sin50°+cos20°sin40°=cos70°sin50°+sin70°cos50°=sin(50°+70°)=sin120°=.故选:D.3.命题p:∀x>2,2x﹣3>0的否定是()A.∃x0>2,B.∀x≤2,2x﹣3>0C.∀x>2,2x﹣3≤0D.∃x0>2,【考点】2J:命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定:∃x0>2,.故选:A.4.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(﹣1<ξ<0)等于()A.pB.1﹣pC.1﹣2pD.﹣p【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量ξ服从标准正态分布N(0,1),得到正态曲线关于ξ=0对称,利用P(ξ>1)=p,即可求出P(﹣1<ξ<0).【解答】解:∵随机变量ξ服从正态分布N(0,1),∴正态曲线关于ξ=0对称,∵P(ξ>1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p.故选:D.5.若双曲线M:(a>0,b>0)的左、右焦点分别是F1,F2,以F1F2为直径的圆与双曲线M相交于点P,且|PF1|=16,|PF2|=12,则双曲线M的离心率为()A.B.C.D.5【考点】KC:双曲线的简单性质.【分析】利用勾股定理以及双曲线的定义,求出a,c即可求解双曲线的离心率即可.【解答】解:双曲线M:(a>0,b>0)的左、右焦点分别是F1,F2,以F1F2为直径的圆与双曲线M相交于点P,且|PF1|=16,|PF2|=12,可得2a=16﹣12=4,解得a=2,2c==20,可得c=10.所以双曲线的离心率为:e==5.故选:D.6.设m、n是两条不同的直线,α、β是两个不同的平面,则m⊥β的一个充分条件是()A.α⊥β且m⊂αB.m∥n且n⊥βC.α⊥β且m∥αD.m⊥n且n∥β【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据充分条件的定义,判断能由哪个选项中的条件推出m⊥β,从而得出结论.【解答】解:由选项A可得直线m也可能在平面β内,故不满足条件,故排除A.由选项B推出m⊥β,满足条件.由选项C可得直线m⊂β,故不满足条件.由选项D可得直线m可能在平面β内,不满足条件,故排除D.故选:B.7.函数(ω>0,)的部分图象如图所示,则φ的值为()A.B.C.D.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由题意可得T,利用周期公式可求ω=2π,由于点(,0)在函数图象上,可得:0=cos(2π×+φ),由余弦函数的图象和性质结合范围,即可计算得解.【解答】解:由题意可得:=﹣=,∴T=1=,解得ω=2π,∴f(x)=cos(2πx+φ),∵点(,0)在函数图象上,可得:0=cos(2π×+φ),∴2π×+φ=kπ+,k∈Z,解得φ=kπ+,k∈Z,∵,∴当k=0时,φ=.故选:B.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可得:该几何体为边长为2的正方体中挖去一个圆锥,数形结合可得答案.【解答】解:该几何体直观图为边长为2的正方体中挖去一个如图所示的圆锥,∴该几何体的表面积为S=6×22+π×1×﹣π=24+π(﹣1),故选D.9.如果执行如图所示的程序框图,则输出的结果是()A.﹣4B.﹣3C.2D.0【考点】EF:程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=﹣2,S=0,满足条件x<﹣1,T=﹣5,S=﹣5不满足条件x≥2,x=﹣1,T=1,S=﹣4不满足条件x≥2,x=0,T=0,S=﹣4不满足条件x≥2,x=1,T=1,S=﹣3不满足条件x≥2,x=2,T=5,S=2满足条件x≥2,退出循环,输出S的值为2.故选:C.10.(x2+xy+2y)5的展开式中x6y2的系数为()A.20B.40C.60D.80【考点】DC:二项式定理的应用.【分析】将三项分解成二项,(x2+xy+2y)5=5利用通项公式求解展开式中x6y2的项,即可求解其系数.【解答】解:由,(x2+xy+2y)5=5,通项公式可得:,当r=0时,(x2+xy)5由通项可得展开式中含x6y2的项,则t不存在.当r=1时,(x2+xy)4由通项可得展开式中含x6y2的项,则t不存在.当r=2时,(x2+xy)3由通项可得展开式中含x6y2的项,则t=0,∴含x6y2的项系数为=40.故选B.11.在△ABC所在平面上有一点P,满足,,则x+y=()A.B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】由向量加减的三角形法则结合相反向量的定义,可得P为线段AB的一个三等分点,再根据向量的加减的几何意义即可求出答案.【解答】解:由,可得+=﹣=,∴=2,∴P为线段AB的一个三等分点,∵=﹣,=﹣,=﹣,∴2=+﹣﹣=+﹣﹣+=2﹣,∴=﹣,∵,∴x=1,y=﹣,∴x+y=,故选:A.12.设函数f(x)=x(lnx﹣ax)(a∈R)在区间(0,2)上有两个极值点,则a的取值范围是()A.B.C.D.【考点】6D:利用导数研究函数的极值.【分析】方法一:求导f′(x)=lnx﹣2ax+1,由关于x的方程a=在区间(0,+∞)由两个不相等的实根,构造辅助函数,根据函数单调性即可求得a取值范围;方法二:由题意,关于x的方程2ax=lnx+1在区间(0,2)由两个不相等的实根,则y=2ax与y=lnx+1有两个交点,根据导数的几何意义,即可求得a的取值范围.【解答】解:方法一:f(x)=x(lnx﹣ax),求导f′(x)=lnx﹣2ax+1,由题意,关于x的方程a=在区间(0,+∞)由两个不相等的实根,令h(x)=,h′(x)=﹣,当x∈(0,1)时,h(x)单调递增,当x∈(1,+∞)单调递减,当x→+∞时,h(x)→0,由图象可知:函数f(x)=x(lnx﹣ax),在(0,2)上由两个极值,只需<a<,故D.方法二:f(x)=x(lnx﹣ax),求导f′(x)=lnx﹣2ax+1,由题意,关于x的方程2ax=lnx+1在区间(0,2)由两个不相等的实根,则y=2ax与y=lnx+1有两个