最新人教版18.2.1矩形的判定ppt

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

18.2.1矩形(2)----矩形的判定江南中学向勇课前热身1、矩形的四个内角都是______。2、矩形的对角线______且__________。直角相等互相平分3、矩形是______________对称图形。轴对称和中心4、在直角三角形中,______角所对的直角边等于斜边的_______。5、在直角三角形中,斜边上的______等于斜边的______。30°一半中线一半测量…?木工朋友在制作窗框后,需要检测所制作的窗框是否是矩形,那么他需要测量哪些数据,其根据又是什么呢?矩形的定义:有一个角是直角的平行四边形是矩形。ABCD∠A=900ABCD是矩形矩形的判定方法1:有一个角是直角的平行四边形是矩形.ABCD∟分别测量出两组对边的长度和一个内角的度数,如果两组对边的长度分别相等,且这个内角是直角,则窗框符合规格先用两组对边相等判定是平行四边,再用定义判定是矩形有一个角是直角有两个角是直角有三个角是直角的四边形是矩形吗?你还有其它的判定方法吗?李芳同学用“边——直角、边——直角、边——直角、边”这样四步,画出了一个四边形,她说这就是一个矩形。猜想她判断的依据?有三个角是直角的四边形是矩形你能证明上述结论吗?ABDC已知:在四边形ABCD中,∠A=∠B=∠C=90°求证:四边形ABCD是矩形。ABCD∟∟∟证明:∵∠A=∠B=90°∴∠A+∠B=180°∴AD∥BC同理可证:AB∥CD∴四边形ABCD是平行四边形又∵∠A=90°∴四边形ABCD是矩形有三个角是直角的四边形是矩形ABCD∵∠A=∠B=∠C=90°∴四边形ABCD是矩形符号表达式:情境:如果工人师傅已经量得窗框的两组对边相等,接着量一量这个窗框的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你知道为什么吗?猜想:对角线相等的平行四边形是矩形。∵四边形ABCD是平行四边形,∴AB=DC且AB∥CD∴△ABC≌△DCB(SSS)∵AB//CD又∵四边形ABCD是平行四边形∴□ABCD是矩形∴∠ABC=∠DCB命题:对角线相等的平行四边形是矩形。已知:在□ABCD,AC=BD求证:□ABCD是矩形ABCD证明:又∵BC=CB,且AC=DB∴∠ABC+∠DCB=180°∴∠ABC=∠DCB=90°ABCDO∵四边形ABCD是平行四边形且AC=BD∴四边形ABCD是矩形对角线相等的平行四边形是矩形符号表达式:测量…?现在你可以帮助木工朋友检测所制作的窗框是否是矩形了吧,你可以测量哪些数据,有几种方案,根据又是什么呢?分别测量出两组对边的长度和一个内角的度数,如果两组对边的长度分别相等,且这个内角是直角,则窗框是矩形测量出三个内角的度数,如果三个内角都是直角,则窗框是矩形分别测量出窗框四边和两条对角线的长度,如果窗框两组对边长度、两条对角线的长度分别相等,那么窗框是矩形方案:方案:方案:有一个角是直角的平行四边形是矩形。对角线相等的平行四边形是矩形。(对角线互相平分且相等的四边形是矩形。)有三个角是直角的四边形是矩形。方法1:方法2:方法3:1、下列各句判定矩形的说法是否正确?(1)有一个角是直角的四边形是矩形;()(2)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线互相平分且相等的四边形是矩形()(3)四个角都是直角的四边形是矩形。()(6)两组对边分别平行,且对角线相等的四边形是矩形。()2、已知如图四边形ABCD中,AB⊥BC,AD∥BC,AD=BC,试说明四边形ABCD是矩形。证明:∵AD=CBAD∥CB∴四边形ABCD是平行四边形∵AB⊥BC∴∠B=90°∴□ABCD是矩形ABCD∟3、BD、BE分别是∠ABC与它的邻补角的平分线,AE⊥BE,AD⊥BD,求证:四边形AEBD是矩形。证明:∵AE⊥BE,AD⊥BD∴∠E=90°,∠D=90°∵BD,BE分别是∠ABC与它的邻补角∠CBP的平分线2121∴∠1=∠ABC,∠2=∠ABP∴□AEBD是矩形CBADEP⌒⌒12∴∠1+∠2=(∠ABC+∠ABP)=×180°=90°2121即∠DBE=90°AOBDC4、已知如图四边形ABCD中AO=BO=CO=DO,试说明四边形ABCD是矩形。证明:∵AO=BO=CO=DO∴AO=CO,BO=DO∴四边形EFGH是平行四边形即AC=BD∴四边形ABCD是矩形又∵AO+CO=BO+DO有一个角是直角的平行四边形是矩形。对角线相等的平行四边形是矩形。(对角线相等且互相平分的四边形是矩形。)有三个角是直角的四边形是矩形。方法1:方法2:方法3:拓展:(1)对角线相等的四边形是矩形吗?(2)需要添加什么条件才能使对角线相等的四边形是矩形吗?归纳:对角线相等且互相平分的四边形是矩形∵AC=BD且OA=OCOB=OD∴四边形ABCD是矩形等腰梯形3、如图,平行四边形ABCD中,AB=6,BC=8,AC=10,求证:四边形ABCD是矩形。DBCA证明:∵AB=6,BC=8,AC=10∴AB2+BC2=62+82=100=102=AC2∴∠B=90°又∵四边形ABCD是平行四边形∴□ABCD是矩形ABCDEFGHO7、已知:矩形ABCD的对角线AC、BD相交于O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH。求证:四边形EFGH是矩形。证明:∵四边形ABCD是矩形∴AO=BO=CO=DO又∵AE=BF=CG=DH∴OE=OF=OG=OH∴四边形EFGH是平行四边形又∵EO+OG=FO+OH即EG=FH∴四边形EFGH是矩形ABDCHEFG∵四边形ABCD是平行四边形∴∠DAB+∠ABC=180°8、如图,ABCD四个内角的平分线围成四边形EFGH,猜想四边形EFGH的形状,并说明理由证明:同理:∠EFG=90°、∠FGH=90°∴四边形EFGH是矩形∵AE、BE分别平分∠DAB、∠ABC∴∠EAB+∠EBA=90°即∠AEB=90°∴∠HEF=90°ABDCHEFG8、如图,ABCD四个内角的平分线围成四边形EFGH,猜想四边形EFGH的形状,并说明理由证明:MPNQ∵四边形ABCD是平行四边形∴∠ABC=∠ADC又∵AN、DM是∠ABC、∠ADC的平分线∴∠ABQ=∠QBC=∠ADM=∠CDM又∵AD∥BC∴∠AQB∠QBC==∠ADM∴BQ∥DM∵AE、BE分别平分∠DAB、∠ABC∴∠EAB+∠EBA=90°即∠AEB=90°∴∠HEF=90°∴四边形EFGH是矩形同理:AN∥CP∴四边形EFGH是平行四边形变式:平行四边形ABCD,AF、BH、CH、DF分别是BAD、ABC、BCD、CDA的平分线。求证:EF=GH.MLKNFGHEDCBA9、如图,在△ABC中,点0是AC边上的一个动点,过点0作直线MN∥BC,若MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,ABCMN012546(1)求证:0E=0F(2)当0运动到何处时,四边形AECF为矩形?说明理由EF证明:∵CF平分∠ACD∴∠1=∠2又∵MN∥BC∴∠1=∠3∴∠2=∠3∴OC=OF同理可证:OC=OE∴OE=OFD答:当点0为AC的中点时,四边形AECF是矩形理由:由(1)知0E=0F,又AO=CO∴四边形AECF是平行四边形又∵EC平分∠ACB,FC平分∠ACD∴∠2+∠4=90°即∠ECF=90°∴四边形AECF是矩形

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功