高中数学选修1-2-1.1回归分析的基本思想及其初步应用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章统计案例a.比《数学3》中“回归”增加的内容数学3——统计1.画散点图2.了解最小二乘法的思想3.求回归直线方程y=bx+a4.用回归直线方程解决应用问题选修1-2——统计案例5.引入线性回归模型y=bx+a+e6.了解模型中随机误差项e产生的原因7.了解相关指数R2和模型拟合的效果之间的关系8.了解残差图的作用9.利用线性回归模型解决一类非线性回归问题10.正确理解分析方法与结果问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否-------有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习:变量之间的两种关系自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?xy施化肥量水稻产量施化肥量x15202530354045水稻产量y330345365405445450455散点图例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重解:1、选取身高为自变量x,体重为因变量y,作散点图:2、由散点图知道身高和体重有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系。3、从散点图还看到,样本点散布在某一条直线的附近,而不是在一条直线上,所以不能用一次函数y=bx+a描述它们关系。我们可以用下面的线性回归模型来表示:y=bx+a+e,其中a和b为模型的未知参数,e称为随机误差。思考P3产生随机误差项e的原因是什么?思考产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、其它因素的影响:影响体重y的因素不只是身高x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高x的观测误差。函数模型与回归模型之间的差别中国GDP散点图020000400006000080000100000120000199219931994199519961997199819992000200120022003年GDP函数模型:abxy回归模型:eabxy可以提供选择模型的准则例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,abniiniiiniiniiixnxyxnyxxbyaxxyyxxb1221121)())((制表78合计654321ixy,,ixxiyy()()iixxyy2()ixxniiniiynyxnx1111,其中所以回归方程是0.84985.712yx所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为0.8497285.71260.316()ykg(,)xy称为样本点的中心探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。712.85849.0^^ab,于是得到探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。函数模型与回归模型之间的差别函数模型:abxy回归模型:eabxy线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。1.用相关系数r来衡量2.公式:12211niiinniiiixxyyrxxyy求出线性相关方程后,说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱呢?849.0b00rxyrxy当时,表示与为正相关;当时,表示与为负相关①、当时,x与y为完全线性相关,它们之间存在确定的函数关系。②、当时,表示x与y存在着一定的线性相关,r的绝对值越大,越接近于1,表示x与y直线相关程度越高,反之越低。1r10r3.性质:[0.751],[1,0.75],[025,0.25],rrr当,表明两个变量正相关很强;当表明两个变量负相关很强;当.表明两个变量相关性较弱。相关关系的测度(相关系数取值及其意义)-1.0+1.00-0.5+0.5完全负相关无线性相关完全正相关负相关程度增加r正相关程度增加对回归模型进行统计检验思考P6:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)和随机误差的影响。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54.5kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。54.5kg用这种方法可以对所有预报变量计算组合效应。数学上,把每个效应(观测值减去总的平均值)的平方加起来,即用21()niiyy表示总的效应,称为总偏差平方和。在例1中,总偏差平方和为354。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。因此,数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。)iiyy(iiieyy=在例1中,残差平方和约为128.361。例如,编号为6的女大学生,计算随机误差的效应(残差)为:61(0.84916585.712)6.627对每名女大学生计算这个差异,然后分别将所得的值平方后加起来,用数学符号表示为:21()niiiyy称为残差平方和,它代表了随机误差的效应。由于解析变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为128.361,所以解析变量的效应为354-128.361=225.639,这个值称为回归平方和。解析变量和随机误差的总效应(总偏差平方和)=解析变量的效应(回归平方和)+随机误差的效应(残差平方和)我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。总的来说:相关指数R2是度量模型拟合效果的一种指标。在线性模型中,它代表自变量刻画预报变量的能力。我们可以用相关指数R2来刻画回归的效果,其计算公式是22121()11()niiiniiyyRyy残差平方和。总偏差平方和1354总计0.36128.361随机误差(e)0.64225.639解释变量(身高)比例平方和来源表1-3从表3-1中可以看出,解析变量对总效应约贡献了64%,即R2≈0.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。2xR解释变量()对预报变量(y表示)的贡献率。r衡量两个变量之间线性相相关系数:关的强弱r2与R的区别:2r2R在数值上:2221;2;3rRrR、先算相关系数、再算相关指数、算总偏差平方和;4、残差平方和=总偏差平方和-总偏差平方和在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。残差分析与残差图的定义:然后,我们可以通过残差来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。12,,,neee编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。iiieyy=使用公式计算残差残差图的制作及作用。•坐标纵轴为残差变量,横轴可以有不同的选择;•若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;•对于远离横轴的点,要特别注意。身高与体重残差图异常点•错误数据•模型问题几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功