最后页第一页上一页下一页目录结束5.1相贯线的概念与性质5.2回转体与回转体相贯线的画法第五章立体表面的相贯线5.3平面体与回转体相贯线的画法最后页第一页上一页下一页目录结束5.1相贯线的概念与性质性质一、两立体表面相交的形式1.两立体表面相交的三种形式两立体表面相交称为相贯,所产生的交线称为相贯线。两外表面相交内外表面相交两内表面相交最后页第一页上一页下一页目录结束2.两立体相交的种类两曲面立体相交曲面与平面立体面相交两平面立体相交最后页第一页上一页下一页目录结束二、相贯线的性质1.共有性——相贯线是两立体表面的共有线。2.封闭性——相贯线一般是封闭的空间折线(通常由直线和曲线组成)或空间曲线。一根空间封闭折线一根空间封闭曲线两根空间封闭曲线最后页第一页上一页下一页目录结束一、求解相贯线的常用画法1.积聚性取点法5.2回转体与回转体相贯线的画法2.辅助平面法3.两正交圆柱体相贯线近似画法二、求解相贯线的一般步骤1.确定交线形状2.确定交线的投影特性3.画相贯线投影的步骤最后页第一页上一页下一页目录结束★作特殊点:作六个极限方向点(最左、右、前、后、高、低)、虚实分界点(投影轮廓线上点)、特征点(双曲线或抛物线的顶点)。★作一般点:★作相贯线投影:即作若干中间点。判别可见性,完成投影。确定交线的范围以保证交线的精确度和弯曲趋势光滑连接各点的同面投影最后页第一页上一页下一页目录结束1.立体表面积聚性取点法当立体表面具有积聚性时,相贯线的投影因重影而成为已知投影,再根据共有性和投影规律便可求出相贯线的其他未知投影。2.积聚性法求解两曲面立体相贯线实例三、积聚性取点法求解相贯线★完成相贯立体的整个投影:补全曲面体的外形线。加深加粗可见轮廓线最后页第一页上一页下一页目录结束例1:求作两正交圆柱体相贯线投影。分析:小圆柱水平投影积聚为圆,相贯线的投影积聚在此圆上大圆柱侧投影积聚为圆,相贯线为积聚在此圆上的一段圆弧作图步骤:作特殊点:作一般点:光滑连接各投影点最后页第一页上一页下一页目录结束例1:求作两正交圆柱体相贯线投影。作图步骤:完成投影最后页第一页上一页下一页目录结束例2:求圆孔与圆筒的相贯线。分析:小孔与圆筒内外面相交,相贯线的水平投影积聚在小孔的投影圆上圆筒内外圆柱面的侧面投影积聚成圆,相贯线投影为积聚在圆内的两段圆弧作孔与圆筒外表面相贯线:作特殊点:作一般点:光滑连接各投影点作孔与圆筒内表面相贯线:作特殊点:作一般点光滑连接各投影点,并判别可见性最后页第一页上一页下一页目录结束例2:求圆孔与圆筒的相贯线。完成相贯线投影最后页第一页上一页下一页目录结束例题3:求侧垂半圆柱与铅垂圆柱相贯线的水平投影。小圆柱水平投影积聚成圆,相贯线的投影与其重合分析:作图步骤:大圆柱侧面投影积聚成半圆,相贯线投影成重合的圆弧作特殊点:最左点Ⅰ最右点Ⅲ(小圆柱的分界点)最前点Ⅱ最后点Ⅴ大圆柱的分界点Ⅳ、Ⅵ作一般点:作Ⅶ、Ⅷ点判别可见性,光滑连接各同面投影点最后页第一页上一页下一页目录结束作图步骤:例题3:求侧垂半圆柱与铅垂圆柱相贯线的水平投影。完成投影最后页第一页上一页下一页目录结束1.辅助平面法根据三面共点原理,利用一系列辅助平面求出两回转体表面上的若干共有点,从而画出相贯线的投影。四、辅助平面法求解相贯线辅助平面法原理最后页第一页上一页下一页目录结束辅助平面的选取原则:要有利于解题,即确保辅助交线的投影是圆或直线。辅助平面为水平面辅助平面为侧垂面最后页第一页上一页下一页目录结束两曲面无积聚性,只能采用辅助平面法求解相贯线作辅助平面P求侧投影分界点C、D作辅助平面Q求中间点E、F例题4:求圆台与半圆球相贯线。2.辅助平面法求解两曲面立体相贯线实例分析:作图步骤:作特殊点:最左(低)点A最右(高)点B作一般点:判别可见性,连各点的同面投影判别可见性补全外形线最后页第一页上一页下一页目录结束作图步骤:整理轮廓线,完成投影例题4:求圆台与半圆球相贯线。2.辅助平面法求解两曲面立体相贯线实例最后页第一页上一页下一页目录结束O点为圆心R为半径作圆弧替代相贯线投影取大圆柱半径R作圆弧交小圆柱轴线于O点作图步骤:取外形素线交点A为圆心1.正交圆柱体相贯线的近似画法五、两正交圆柱体相贯线的近似画法及其趋势工程上为了方便作图,允许采用圆弧代替相贯线投影。圆弧的半径应取大圆柱的半径。圆弧顶点靠近大圆柱轴线,而圆心O远离大圆柱轴线最后页第一页上一页下一页目录结束2.两正交圆柱体直径变化时,相贯线的投影趋势Dd双曲线上下对称两圆柱的一个直径保持不变,另一个直径进行变化,相贯线在两轴线所平行的投影面上的投影趋势如下:D=d相交两直线Dd双曲线左右对称最后页第一页上一页下一页目录结束3.两圆柱体直径不变,轴线前后相对位置改变时对相贯线的影响两圆柱体轴线垂直相交两圆柱体轴线交叉垂直偏距为e1两圆柱体轴线交叉垂直偏距为e2最后页第一页上一页下一页目录结束1.两回转曲面轴线相交,且公切于一个球面,相贯线分解成平面曲线六、相贯线的特殊情况两曲面立体的相贯线一般是四次曲线,特殊情况下是平面曲线或直线。两圆柱轴线相交且公切于一个球(直径相同)相贯线为两椭圆相贯线的投影为过外形素线交点的相交线最后页第一页上一页下一页目录结束两曲面立体轴线相交且公切于一个球相贯线为两椭圆相贯线的投影为过外形素线交点的相交线最后页第一页上一页下一页目录结束例题5:求相贯线的正面投影。两圆柱面直径相同相贯线正面投影为相交直线内外圆柱面的相贯线用近似画法表示两圆柱孔直径相同相贯线正面投影为相交直线最后页第一页上一页下一页目录结束2.两回转曲面具有公共轴线时,相贯线为垂直于轴线的圆相贯线的投影为过外形素线交点的平行线相贯线的投影为过外形素线相交点的直线相贯线的投影为过外形素线交点的平行线最后页第一页上一页下一页目录结束例题6:补全三圆柱体相交后的主、俯视图。七、三体或多体相交首先应分析每个局部相邻两立体的相交形式,然后再进行相贯线的分析与作图。分析与作图:A、C圆柱交线的已知投影有积聚性,用近似画法作主视图B、C圆柱交线的已知投影有积聚性,用近似画法作主视图B圆柱顶面与C圆柱交线为侧垂线最后页第一页上一页下一页目录结束例题6:补全三圆柱体相交后的主、俯视图。七、三体相交首先应分析每个局部相邻两立体的相交形式,然后再进行相贯线的分析与作图。分析与作图:整理轮廓线,完成主、俯视图最后页第一页上一页下一页目录结束例题7:求多体相交的相贯线投影。分析与作图:半球与大圆柱相切,投影无线小圆柱上半面与圆球相交,交线为圆弧小圆柱下半面与圆柱相交,相贯线为空间曲线,正面投影采用近似画法表示最后页第一页上一页下一页目录结束求平面体与回转体的相贯线,其实质就是求平面体各棱面与曲面体的截交线。5.3平面体与回转体相贯线的画法一、求解相贯线的步骤1.分析相贯线形状2.确定相贯线投影特性3.作各棱线与曲面的交点4.按截交线的作图方法依次求出各棱面与曲面的截交线5.判别可见性,完成立体与相贯线的投影最后页第一页上一页下一页目录结束二、平面立体与回转体相贯实例例题8:已知立体的俯、左视图,补全主视图。分析与作图:前后棱面与外圆柱面交线为两侧垂线左右棱面与外圆柱面交线为侧平圆弧四棱孔前后棱面与圆柱孔的交线为侧侧垂线四棱孔左右棱面与圆柱孔交线为侧平圆弧最后页第一页上一页下一页目录结束二、平面立体与回转体相贯实例例题8:已知立体的俯、左视图,补全主视图。分析与作图:整理轮廓线,完成投影最后页第一页上一页下一页目录结束例题9:已知立体的俯、左视图,补全主视图。分析与作图:作同轴圆柱体和孔槽轮廓线主视图作半圆孔与小圆柱相贯线作孔槽前后正平面与小圆柱体的交线作孔槽前后正平面与大圆柱体的交线作孔槽水平面与大圆柱体的交线最后页第一页上一页下一页目录结束例题9:已知立体的俯、左视图,补全主视图。分析与作图:擦除孔槽中被切去的外形线,加深加粗可见外形线,完成主视图最后页第一页上一页下一页目录结束例题10:求多体相交的相贯线投影。圆柱表面相切表面相切分析和作图时应注意:不得画出两相邻表面的切线表面相交表面相交四棱柱半圆柱最后页第一页上一页下一页目录结束例题10:求多体相贯的相贯线投影。完成相贯线投影最后页第一页上一页下一页目录结束本章结束