14.2全等三角形的判定(第1时)讲解

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

14.2全等三角形的判定(第1课时)乌龙镇中心学校龚家林学习目标1、经历探究三角形全等的条件2、通过作图理解SAS--基本事实3、能够运用SAS证明一些简单的三角形全等4、推理能力的培养,证明过程的书写ABC1、什么叫全等三角形?能够完全重合的两个三角形叫全等三角形。2、全等三角形有什么性质?全等三角形的对应边相等,对应角相等。'A'B'C温故而知新ABC即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得到什么结论?'A'B'CC'B'A'ABC答:≌''''''ACCA3CBBC2BAAB1=)(=)(=)(C'B'A'ABC中,有和在CC6BB5AA4=)(=)(=)(’’’与满足上述六个条件中的一部分是否能保证与全等呢?CBAABCCBAABCABCABC一个条件可以吗?两个条件可以吗?一个条件可以吗?1.有一条边相等的两个三角形不一定全等探究活动2.有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等1.有两个角对应相等的两个三角形两个条件可以吗?3.有一个角和一条边对应相等的两个三角形2.有两条边对应相等的两个三角形不一定全等30060o4cm不一定全等30o6cm结论:三个条件呢?1.三个角;2.三条边;3.两边一角;4.两角一边。如果给出三个条件画三角形,你能说出有哪几种可能的情况?结论:三个内角对应相等的三角形不一定全等。1.有三个角对应相等的两个三角形60o30030060o三个条件呢?尺规作图:探究边角边的判定方法问题1先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A'=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?ABCABCA′DE现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.B′C′几何语言:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS).归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A=∠A′,AC=A′C′,已知:如图,AD∥BC,AD=CB求证:△ADC≌△CBA分析:观察图形,结合已知条件,知,AD=CB,AC=CA,但没有给出两组对应边的夹角(∠1,∠2)相等。所以,应设法先证明∠1=∠2,才能使全等条件充足。AD=CB(已知)∠1=∠2(已证)AC=CA(公共边)∴△ADC≌△CBA(SAS)例1:证明:∵AD∥BC∴∠1=∠2(两直线平行,内错角相等)在△DAC和△BCA中DC1AB2B例2:因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。。小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结DE,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。AC=DC∠ACB=∠DCEBC=EC∴△ACB≌△DCE(SAS)∴AB=DE在△ACB和△DCE中BCDEA例3:如图,已知AB=AC,AD=AE。求证:∠B=∠CCEABAD证明:在△ABD和△ACE中(已知)=(公共角)=(已知)=AEADAAACAB∴△ABD≌△ACE(SAS)∴∠B=∠C(全等三角形对应角相等)例4:已知:点A、E、F、C在同一条直线上,AD=CB,AD∥CB,AE=CF.求证:EB∥DFADBCEF证明:∵AD∥CB∴∠A=∠C∵AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中AF=CE∠A=∠CAD=CB∴∴△AFD≌△CEB(SAS)∴∠AFD=∠CEB∴EB∥DF课堂练习1、下列图形中有没有全等三角形,并说明全等的理由.甲丙乙30°30°30°课堂练习图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲丙乙30°30°30°2、如图,已知AB和CD相交与O,OA=OB,OC=OD.说明△OAD与△OBC全等的理由OA=OB(已知)∠1=∠2(对顶角相等)OD=OC(已知)∴△OAD≌△OBC(SAS)解:在△OAD和△OBC中CBADO213、如图所示,根据题目条件,判断下面的三角形是否全等.(1)AC=DF,∠C=∠F,BC=EF;(2)BC=BD,∠ABC=∠ABD.答案:(1)全等(2)全等课堂小结1、经历探究三角形全等的条件2、通过作图理解SAS--基本事实3、能够运用SAS证明一些简单的三角形全等4、推理能力的培养,证明过程的书写作业设置:1、巩固复习:课本P97--P1002、预习新课:课本P101--P1023、当堂作业:课本P100练习1、2、34、课堂作业:课本P111习题14.2第2、3两题5、课下作业:课本习题14.2;基础训练等同步到14.2

1 / 25
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功