12.2全等三角形的判定(第二课时)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

八年级上册12.2三角形全等的判定(第2课时)课件说明•本节内容是在学生已探明了两个三角形全等至少需要满足三个条件,及三边分别相等的两个三角形全等的基础上,探究两边和一角分别相等的情形.•学习目标:1.探索并正确理解“SAS”的判定方法.2.会用“SAS”判定方法证明两个三角形全等.3.了解“SSA”不能作为两个三角形全等的条件.•学习重点:用“SAS”判定方法证明两个三角形全等,并能进行简单的应用.课件说明尺规作图,探究边角边的判定方法问题1先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A'=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?ABCABCA′DE尺规作图,探究边角边的判定方法现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.B′C′几何语言:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS).尺规作图,探究边角边的判定方法归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A=∠A′,AC=A′C′,课堂练习下列图形中有没有全等三角形,并说明全等的理由.甲丙乙30°30°30°课堂练习图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲丙乙30°30°30°利用今天所学“边角边”知识,带黑色的那块.因为它完整地保留了两边及其夹角,一个三角形两条边的长度和夹角的大小确定了,这个三角形的形状、大小就确定下来了.应用“SAS”判定方法,解决简单实际问题问题2某同学不小心把一块三角形的玻璃从两个顶点处打碎成两块(如图),现要到玻璃店去配一块完全一样的玻璃.请问如果只准带一块碎片,应该带哪一块去,能试着说明理由吗?例题讲解,学会运用例如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED,那么量出DE的长就是A,B的距离.为什么?ABCDE12例题讲解,学会运用AC=DC(已知),∠1=∠2(对顶角相等),BC=EC(已知),证明:在△ABC和△DEC中,ABCDE12∴△ABC≌△DEC(SAS).∴AB=DE(全等三角形的对应边相等).如图,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC和△ABD不全等.探索“SSA”能否识别两三角形全等问题3两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?ABCD画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?两边和其中一边的对角这三个条件无法唯一确定三角形的形状,所以不能保证两个三角形全等.因此,△ABC和△DEF不一定全等.探索“SSA”能否识别两三角形全等(1)本节课学习了哪些主要内容?(2)我们是怎么探究出“SAS”判定方法的?用“SAS”判定三角形全等应注意什么问题?(3)到现在为止,你学到了几种证明两个三角形全等的方法?课堂小结教科书习题12.2第2、3、10题.布置作业

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功