12.2全等三角形的判定1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十二章全等三角形全等三角形的性质是?全等三角形的对应边相等,对应角相等.反过来成立吗?一.回顾个三角形全等呢?证这两中的一部分是否也能保满足六个条件与吗?就能保证满足与反过来如果'C'B'AABC'C'B'AABC,'CC,'BB,'AA,'A'CCA,'C'BBC,'B'AABC'B'A'ABC二.探究先任意画出一个△ABC,再画一个△A’B’C’,使△ABC与△A’B’C’满足上六个条件中的一个或两个。你画出的△A’B’C’与△ABC一定全等吗?两个直角三角形,有一个角相等,它们全等吗?有一条边相等的两个三角形全等吗?一边、一角相等的两个三角形全等吗?通过画图我们可以发现,满足上述六个条件中的一个或两个,△ABC与△A’B’C’不一定全等。满足三个条件呢?能保证他们全等吗?我们来分情况讨论。先任意画一个△ABC再画一个△A’B’C’,使A’B’=AB,B’C’=BC,C’A’=CA。把画好的△A’B’C’剪下,放到△ABC上,它们全等吗?画一个△A’B’C’,使A’B’=AB,A’C’=AC,B’C’=BC;1、画线段B’C’=BC;2、分别以B’、C’为圆心,线段AB,AC为半径画弧,两弧交于点A’;3、连接线段A’B’,A’C’;CAA’BC’B’探究2反应了什么规律?三边对应相等的两个三角形全等(可简写成SSS)在△ABC与△A’B’C’中,∵AB=A’B’,BC=B’C’,AC=A’C’∴△ABC≌△A’B’C’CAA’BC’B’我们曾经作过这样的实验,将三根木条钉成一个三角形木架,这个三角形木架的形状、大小就不变了。就是说三角形的形状大小也就确定了,这里用到的就是上面的结论。用上面的结论可以判断两个三角形全等,判断两个三角形全等的过程,叫做证明三角形全等。例1如图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架。求证△ABC≌△ACDCABD分析:要证△ABC≌△ACD,可以看这两个三角形三边是否_______它们相等吗?相等CABDCABD证明:∵D是BC的中点,∴BD=CD﹛AB=AC,在△ABD与△ACD中BD=CD,AD=AD,∴△ABD≌△ACD(SSS)(公共边)(已证)(已知)从例1可以看出,证明是由题设(已知)出发,经过一步步推理,最后推出结论(求证)正确的过程。三.小结SSS:三边对应相等已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB。要用“边边边”证明△ABD≌△FDE,除了已知中的AC=FE,BC=DE以还应该有什么条件?怎样才能得到这个条件?ABCDEF四.工人师傅常用角尺平分一个任意角。做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线。为什么?

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功