几何图形初步按柱、锥、球划分(1)(2)是一类,是柱体(3)(4)是锥体(5)是球体柱体锥体圆柱棱柱圆锥棱锥四棱柱六棱柱五棱柱三棱柱四棱锥五棱锥六棱锥三棱锥球体观察立体图三视图主视图左(右)视图俯视图例:画出以下立体图形的三视立体图形图2.平面图形正方体长方体四棱锥三棱柱三棱柱五棱锥归纳:正方体的表面展开图有以下11种。一四一型二三一型阶梯型222334.5.直线、射线、线段的关系直线射线线段图形表示法直线AB直线BA直线a射线AB射线a线段AB线段BA线段a延伸性向两方无限延伸向一方无限延伸不延伸有关性质两点确定一条直线两点之间线段最短ABBAaABaa6.线段的中点:把一条线段分成相等两部分的点叫线段的中点.CAB如图,点C是线段AB的中点,则有(1)AC=BC=;AB21(2)AB=2AC=2BC.线段的基本性质:在所有连接两点的线中,线段的长度最短.即两点之间,线段最短.AB7.两点间的距离:连接两点间的线段的长度叫做两点间的距离.1.有公共端点的两条射线组成的图形叫做角.公共端点叫角的顶点,两条射线叫角的边.2.角还可以看成是由一条射线绕着它的端点旋转而成的图形.OOABAB9.角的表示方法:OBA(1)用三个大写字母:表示角的顶点的字母写在中间∠AOB;1OBA(2)用数字:∠1,∠2;(3)用希腊字母:∠α,∠β;(4)用一个大写字母:表示角的顶点的字母∠O.Oa10.角的大小比较角的大小只与开口大小有关,而与角的边的长短无关.OBAEDC(1)度量法(2)叠合法11.角度的转化:1°=60′1′=60〞1°=3600〞角度的加减:1.同种形式相加减;2.度加(减)度;分加(减)分;秒加(减)秒3.超60进一;减一成60例1计算:6241094412362532456)2(45344277)1('0'0'0'0'0)()(化为度2.下午2点15分到5点30分,时钟的时针转了多少度?12.角的平分线1、定义:从角的顶点出发把这个角分成两个相等的角的射线叫做这个角的平分线.2、几何语言表达:∵OC是∠AOB的平分线OABC12∴∠1=∠2=∠AOB或∠AOB=2∠1=2∠22113.角的特殊关系互为余角:如果两个角的和等于90°,就说这两个角互为余角,其中一个是另一个的余角.互为补角:如果两个角的和等于180°,就说这两个角互为补角,其中一个是另一个的补角.1212若∠1+∠2=90°,则∠1与∠2互为余角.若∠1+∠2=180°,则∠1与∠2互为补角.互余、互补的性质等角的余角相等;等角的补角相等.60°东西南北14.方位角:1、方位角是以正南、正北方向为基准,描述物体的运动方向。2、北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向。3、方位角在航行、测绘等实际生活中的应用十分广泛。OA15°B50°C你能解决下列问题吗?1、图中共有几条线段?几条射线?几条直线?能用字母表示出来的分别用字母表示出来。ABC2、判断下列说法正确的是()A.延长射线OA;B.直线比射线长,射线比线段长;C.直线AB和直线CD相交于点m;D.A、B两点间的距离就是连结A、B两点间的线段。D3.用一个钉子把一根细木条钉在木板上,用手拔木条,木条能转动,这表明__________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明________________。4.如图所示,一只蚂蚁要从圆柱体A点沿表面尽可能地爬到B点,因为那里有它的食物,而它饿得快不行了,怎么爬行路线最短?··AB过一点有无数条直线两点确定一条直线5.有关线段的计算问题(1)如图,A、B、C、D是直线l上顺次四点,且线段AC=5,BD=4,则线段AB-CD=_____.ABCDl(2)如图,AC=8cm,CB=6cm,如果O是线段AB的中点,求线段OC的长度。ABCO1探究一、有关距离问题1.如图,在一条笔直的公路a两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村距离之和最小,问汽车站C的位置应该如何确定?aAB··C2、若要在普陀山建造一个消费场所,为了方便游客,要求是到图中四个红色的旅游区的距离之和最短,请问应该建造在何处?如图,线段AB与线段CD的交点E为所求的点,即消费场所建在E点位置最合适。ABCDEACDBOEE1.如图,已知∠AOB与∠BOC互补,OD是∠AOB的平分线OE是∠BOC的三等分线,若∠DOE=72°,求∠EOC的度数x°(72-x)°x°角的运算