第九章并发控制2问题的产生多用户数据库系统的存在允许多个用户同时使用的数据库系统飞机定票数据库系统银行数据库系统特点:在同一时刻并发运行的事务数可达成百上千个3不同的多事务执行方式:(1)事务串行执行每个时刻只有一个事务运行,其他事务必须等到这个事务结束以后方能运行不能充分利用系统资源,发挥数据库共享资源的特点T1T2T3事务的串行执行方式4(2)交叉并发方式(InterleavedConcurrency)在单处理机系统中,事务的并行执行是这些并行事务的并行操作轮流交叉运行单处理机系统中的并行事务并没有真正地并行运行,但能够减少处理机的空闲时间,提高系统的效率5事务的交叉并发执行方式6(3)同时并发方式(simultaneousconcurrency)多处理机系统中,每个处理机可以运行一个事务,多个处理机可以同时运行多个事务,实现多个事务真正的并行运行7事务并发执行带来的问题:会产生多个事务同时存取同一数据的情况可能会存取和存储不正确的数据,破坏事务一致性和数据库的一致性8第九章并发控制9.1并发控制概述9.2封锁9.3活锁和死锁9.4并发调度的可串行性9.5两段锁协议9.6封锁的粒度(自学)99.1并发控制概述并发控制机制的任务对并发操作进行正确调度保证事务的隔离性保证数据库的一致性10并发操作带来数据的不一致性实例[例1]飞机订票系统中的一个活动序列①甲售票点(甲事务)读出某航班的机票余额A,设A=16;②乙售票点(乙事务)读出同一航班的机票余额A,也为16;③甲售票点卖出一张机票,修改余额A←A-1,所以A为15,把A写回数据库;④乙售票点也卖出一张机票,修改余额A←A-1,所以A为15,把A写回数据库结果明明卖出两张机票,数据库中机票余额只减少111这种情况称为数据库的不一致性,是由并发操作引起的。在并发操作情况下,对甲、乙两个事务的操作序列的调度是随机的。若按上面的调度序列执行,甲事务的修改就被丢失。原因:第4步中乙事务修改A并写回后覆盖了甲事务的修改12并发操作带来的数据不一致性丢失修改(LostUpdate)不可重复读(Non-repeatableRead)读“脏”数据(DirtyRead)记号R(x):读数据xW(x):写数据x131.丢失修改两个事务T1和T2读入同一数据并修改,T2的提交结果破坏了T1提交的结果,导致T1的修改被丢失。上面飞机订票例子就属此类14T1T2①R(A)=16②R(A)=16③A←A-1W(A)=15④A←A-1W(A)=15丢失修改152.不可重复读不可重复读是指事务T1读取数据后,事务T2执行更新操作,使T1无法再现前一次读取结果。16不可重复读包括三种情况:(1)事务T1读取某一数据后,事务T2对其做了修改,当事务T1再次读该数据时,得到与前一次不同的值17T1读取B=100进行运算T2读取同一数据B,对其进行修改后将B=200写回数据库。T1为了对读取值校对重读B,B已为200,与第一次读取值不一致T1T2①R(A)=50R(B)=100求和=150②R(B)=100B←B*2W(B)=200③R(A)=50R(B)=200和=250(验算不对)不可重复读例如:18(2)事务T1按一定条件从数据库中读取了某些数据记录后,事务T2删除了其中部分记录,当T1再次按相同条件读取数据时,发现某些记录消失了(3)事务T1按一定条件从数据库中读取某些数据记录后,事务T2插入了一些记录,当T1再次按相同条件读取数据时,发现多了一些记录。后两种不可重复读有时也称为幻影现象(PhantomRow)193.读“脏”数据读“脏”数据是指:事务T1修改某一数据,并将其写回磁盘事务T2读取同一数据后,T1由于某种原因被撤销这时T1已修改过的数据恢复原值,T2读到的数据就与数据库中的数据不一致T2读到的数据就为“脏”数据,即不正确的数据20T1T2①R(C)=100C←C*2W(C)=200②R(C)=200③ROLLBACKC恢复为100例如读“脏”数据T1将C值修改为200,T2读到C为200T1由于某种原因撤销,其修改作废,C恢复原值100这时T2读到的C为200,与数据库内容不一致,就是“脏”数据21数据不一致性:由于并发操作破坏了事务的隔离性并发控制就是要用正确的方式调度并发操作,使一个用户事务的执行不受其他事务的干扰,从而避免造成数据的不一致性22并发控制的主要技术封锁(Locking)时间戳(Timestamp)乐观控制法商用的DBMS一般都采用封锁方法239.2封锁什么是封锁基本封锁类型锁的相容矩阵24什么是封锁封锁就是事务T在对某个数据对象(例如表、记录等)操作之前,先向系统发出请求,对其加锁加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其它的事务不能更新此数据对象。25基本封锁类型一个事务对某个数据对象加锁后究竟拥有什么样的控制由封锁的类型决定。基本封锁类型排它锁(ExclusiveLocks,简记为X锁)共享锁(ShareLocks,简记为S锁)26排它锁排它锁又称为写锁若事务T对数据对象A加上X锁,则只允许T读取和修改A,其它任何事务都不能再对A加任何类型的锁,直到T释放A上的锁保证其他事务在T释放A上的锁之前不能再读取和修改A27共享锁共享锁又称为读锁若事务T对数据对象A加上S锁,则其它事务只能再对A加S锁,而不能加X锁,直到T释放A上的S锁保证其他事务可以读A,但在T释放A上的S锁之前不能对A做任何修改28锁的相容矩阵Y=Yes,相容的请求N=No,不相容的请求T1T2XS-XNNYSNYY-YYY29使用封锁机制解决丢失修改问题T1T2①XlockA②R(A)=16XlockA③A←A-1等待W(A)=15等待Commit等待UnlockA等待④获得XlockAR(A)=15A←A-1⑤W(A)=14CommitUnlockA例:事务T1在读A进行修改之前先对A加X锁当T2再请求对A加X锁时被拒绝T2只能等待T1释放A上的锁后T2获得对A的X锁这时T2读到的A已经是T1更新过的值15T2按此新的A值进行运算,并将结果值A=14送回到磁盘。避免了丢失T1的更新。没有丢失修改30使用封锁机制解决不可重复读问题T1T2①SlockASlockBR(A)=50R(B)=100求和=150②XlockB等待等待③R(A)=50等待R(B)=100等待求和=150等待Commit等待UnlockA等待UnlockB等待④获得XlockBR(B)=100B←B*2⑤W(B)=200CommitUnlockB事务T1在读A,B之前,先对A,B加S锁其他事务只能再对A,B加S锁,而不能加X锁,即其他事务只能读A,B,而不能修改当T2为修改B而申请对B的X锁时被拒绝只能等待T1释放B上的锁T1为验算再读A,B,这时读出的B仍是100,求和结果仍为150,即可重复读T1结束才释放A,B上的S锁。T2才获得对B的X锁可重复读31使用封锁机制解决读“脏”数据问题T1T2①XlockCR(C)=100C←C*2W(C)=200②SlockC等待③ROLLBACK等待(C恢复为100)等待UnlockC等待④获得SlockCR(C)=100⑤CommitCUnlockC例事务T1在对C进行修改之前,先对C加X锁,修改其值后写回磁盘T2请求在C上加S锁,因T1已在C上加了X锁,T2只能等待T1因某种原因被撤销,C恢复为原值100T1释放C上的X锁后T2获得C上的S锁,读C=100。避免了T2读“脏”数据不读“脏”数据329.3活锁和死锁封锁技术带来的新问题:死锁活锁339.3.1活锁事务T1封锁了数据R事务T2又请求封锁R,于是T2等待。T3也请求封锁R,当T1释放了R上的封锁之后系统首先批准了T3的请求,T2仍然等待。T4又请求封锁R,当T3释放了R上的封锁之后系统又批准了T4的请求……T2有可能永远等待,这就是活锁的情形34活锁35避免活锁:采用先来先服务的策略当多个事务请求封锁同一数据对象时按请求封锁的先后次序对这些事务排队该数据对象上的锁一旦释放,首先批准申请队列中第一个事务获得锁369.3.2死锁事务T1封锁了数据R1T2封锁了数据R2T1又请求封锁R2,因T2已封锁了R2,于是T1等待T2释放R2上的锁接着T2又申请封锁R1,因T1已封锁了R1,T2也只能等待T1释放R1上的锁这样T1在等待T2,而T2又在等待T1,T1和T2两个事务永远不能结束,形成死锁37T1T2lockR1••LockR2••LockR2.•等待•等待LockR1等待等待等待等待•38解决死锁的方法两类方法1.预防死锁2.死锁的诊断与解除391.死锁的预防产生死锁的原因两个或多个事务都已封锁了一些数据对象,然后又都请求对已为其他事务封锁的数据对象加锁,从而出现死等待。预防死锁的发生就是要破坏产生死锁的条件40预防死锁的方法一次封锁法顺序封锁法41(1)一次封锁法要求每个事务必须一次将所有要使用的数据全部加锁,否则就不能继续执行存在的问题降低系统并发度难于事先精确确定封锁对象42(2)顺序封锁法顺序封锁法是预先对数据对象规定一个封锁顺序,所有事务都按这个顺序实行封锁。顺序封锁法存在的问题维护成本数据库系统中封锁的数据对象极多,并且在不断地变化。难以实现:很难事先确定每一个事务要封锁哪些对象43结论在操作系统中广为采用的预防死锁的策略并不很适合数据库的特点DBMS在解决死锁的问题上更普遍采用的是诊断并解除死锁的方法442.死锁的诊断与解除死锁的诊断超时法事务等待图法45(1)超时法如果一个事务的等待时间超过了规定的时限,就认为发生了死锁优点:实现简单缺点有可能误判死锁时限若设置得太长,死锁发生后不能及时发现46(2)等待图法用事务等待图动态反映所有事务的等待情况事务等待图是一个有向图G=(T,U)T为结点的集合,每个结点表示正运行的事务U为边的集合,每条边表示事务等待的情况若T1等待T2,则T1,T2之间划一条有向边,从T1指向T247事务等待图图(a)中,事务T1等待T2,T2等待T1,产生了死锁图(b)中,事务T1等待T2,T2等待T3,T3等待T4,T4又等待T1,产生了死锁图(b)中,事务T3可能还等待T2,在大回路中又有小的回路48并发控制子系统周期性地(比如每隔数秒)生成事务等待图,检测事务。如果发现图中存在回路,则表示系统中出现了死锁。49解除死锁选择一个处理死锁代价最小的事务,将其撤消释放此事务持有的所有的锁,使其它事务能继续运行下去509.4并发调度的可串行性DBMS对并发事务不同的调度可能会产生不同的结果什么样的调度是正确的?519.4.1可串行化调度可串行化(Serializable)调度多个事务的并发执行是正确的,当且仅当其结果与按某一次序串行地执行这些事务时的结果相同可串行性(Serializability)是并发事务正确调度的准则一个给定的并发调度,当且仅当它是可串行化的,才认为是正确调度52[例]现在有两个事务,分别包含下列操作:事务T1:读B;A=B+1;写回A事务T2:读A;B=A+1;写回B现给出对这两个事务不同的调度策略53串行化调度,正确的调度T1T2SlockBY=R(B)=2UnlockBXlockAA=Y+1=3W(A)UnlockASlockAX=R(A)=3UnlockAXlockBB=X+1=4W(B)UnlockB串行调度(a)假设A、B的初值均为2。按T1→T2次序执行结果为A=3,B=4串行调度策略,正确的调度54串行化调度,正确的调度T1T2SlockAX=R(A)=2UnlockAXlockBB=X+1=3W(B)UnlockBSlockBY=R(B)=3Unlock