1.问题的引入:.(1)在我国古代就有嫦娥奔月的神话故事.明月高悬,我们仰望夜空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?实际问题:BCA已知BC长和∠ABC、∠ACB的值,如何求AB长?我们这一节所学习的内容就是解决这些问题的有力工具.ABC3C2C1CBC的长度与角A的大小有关吗?三角形中角A与它的对边BC的长度是否存在定量关系?回忆一下直角三角形的边角关系?ABCcbasinacA两等式间有联系吗?sinsinabcABsin1CsinsinsinabcABC思考:对一般的三角形,这个结论还能成立吗?2.定理的推导1.1.1正弦定理sinbcB(1)当是锐角三角形时,结论是否还成立呢?ABCD如图:作AB上的高是CD,根椐三角形的定义,得到.sinsinbcAEBCBC同理,作有sinsinsinabcABC1.1.1正弦定理sin,sinCDaBCDbAsinsinaBbA所以sinsinabAB得到BACabcE在锐角三角形中.的夹角为与,的夹角为与,的夹角为与ABjCBjACjC90A9090由向量加法的三角形法则ABCBACABjCBjACjABjCBACjj得的数量积两边同取与,)90cos()90cos(90cosAABjCCBjACj定义)(根据向量的数量积的CcAaAcCasinsinsinsin即在锐角三角形中,可得垂直于点作过同理,sinsin,BbCcCBjCCcBbAasinsinsin也有jBACabc,于垂直作单位向量证明:过点ACjA(2)当是钝角三角形时,以上等式是否仍然成立?ABCBACbca1.1.1正弦定理DCCbADsinsin)(且CcBbAasinsinsin仿上可得此时也有cADBsin交BC延长线于D,过点A作AD⊥BC,CcBbAasinsinsin 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即三角形的三边及三内角的正弦值间的一个关系,任意角三角形中边与角的一种数量关系。定理特征:1.1.1正弦定理剖析定理、加深理解sinsinsinabcABC1、A+B+C=π2、大角对大边,大边对大角正弦定理:剖析定理、加深理解3、正弦定理可以解决三角形中的问题:①已知两角和一边,求其他角和边②已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角sinsinsinabcABC正弦定理:剖析定理、加深理解4、一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫解三角形sinsinsinabcABC正弦定理:例1在△ABC中,已知A=32.0o,B=81.8o,a=42.9cm,解三角形.解:根据三角形内角和定理,.;.3.定理的应用举例练1在已知,解三角形.ABC0030,135,2ABa通过本题你发现了什么一般性结论吗?小结:知道三角形的两个内角和任何一边,利用正弦定理可以求出三角形中的其它元素。1.1.1正弦定理3.定理的应用举例变式:若将a=2改为c=2,结果如何?例2、已知a=16,b=,A=30°.解三角形.已知两边和其中一边的对角,求其他边和角解:由正弦定理BbAasinsin得231630sin316sinsinaAbB所以B=60°,或B=120°当时B=60°C=90°.32cC=30°.16sinsinACac316当B=120°时B16300ABC1631683变式:a=30,b=26,A=30°,解三角形300ABC2630解:由正弦定理BbAasinsin得30133030sin26sinsinaAbB所以B=25.70,或B=1800-25.70=154.30由于154.30+3001800故B只有一解(如图)C=124.30,57.49sinsinACac30137.25sin小结:已知两边和其中一边的对角,可以求出三角形的其他的边和角。4.基础练习题1.1.1正弦定理00(1)45,2,2,103(2)60,4,,3ABCAabBABCAabB在中,已知求在中,已知求B=300无解BCAbsinβAB=sin(α+β)5.探究课题引入时问题(2)的解决方法.1.1.1正弦定理•正弦定理•主要应用sinsinsinabcABC(1)已知两角及任意一边,可以求出其他两边和另一角;(2)已知两边和其中一边的对角,可以求出三角形的其他的边和角。(此时可能有一解、二解、无解)1.1.1正弦定理小结:课后探究:sinsinsinabckABC那么这个k值是什么呢?你能用一个和三角形有关的量来表示吗?作业:P102(1)你还可以用其它方法证明正弦定理吗?(2)