氧化沟、A2O、膜处理、CASS、MSBR工艺比较

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,产泥量较大;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·运行费用较高,能耗较高;·污泥渗出液需化学除磷。氧化沟工艺的缺点:(1)污泥膨胀问题当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。(2)泡沫问题由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。(3)污泥上浮问题当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。(4)流速不均及污泥沉积问题在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3~0.5m/s。氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm,转盘的浸没深度为480~530mm。与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。生物膜处理工艺的缺点:(1)占地面积大,不适于处理量大的污水;(2)填料易堵塞;(3)滤池表面易产生池蝇;(4)进水口处的喷嘴在喷洒污水时会散发臭味;(5)在布水和充氧时会很不均匀,有可能出现死角;(6)N、P不易处理。CASS工艺主要存在以下几个方面的问题:(1)微生物种群之间的复杂关系有待研究CASS系统的微生物种群结构与常规活性污泥法不同,菌群主要由硝化菌、反硝化菌、聚磷菌和异氧型好氧菌组成。目前对非稳态CASS系统中微生物种群之间的复杂的生存竞争和生态平衡关系尚不甚了解,CASS工艺理论只是从工艺过程进行一些分析探讨,而理清微生物种群之间的关系对CASS工艺的优化运行是大有好处的,因此仍需加强对这方面的理论研究工作。(2)生物脱氮效率难以提高一方面硝化反应难以进行完全。硝化细菌是一种化能自养菌,有机物降解由异养细菌完成。当两种细菌混合培养时,由于存在对底物和DO的竞争,硝化菌的生长将受到限制,难以成为优势种群,硝化反应被抑制。此外,固定的曝气时间也可能会使得硝化不彻底。另一方面就是反硝化反应不彻底。CASS工艺有约20%的硝态氮通过回流污泥进行反硝化,其余的硝态氮则通过同步硝化反硝化和沉淀、闲置期污泥的反硝化实现,其效果也不理想。在沉淀、闲置期中,由于污泥与废水不能良好的进行混合,废水中部分硝态氮不能与反硝化细菌接触,故不能被还原。此外,在这一时期,由于有机物己充分降解,反硝化所需的碳源不足,也限制了反硝化效率的进一步提高。这两方面的原因使得CASS工艺脱氮效率难以提高。(3)除磷效率难以提高污泥在生物选择器中的释磷过程受到回流混合液中硝态氮浓度的影响比较大,在CASS工艺系统中难以继续提高除磷效率。(4)控制方式较为单一目前在实际应用中的CASS工艺基本上都是以时序控制为主的,其缺点是显而易见的,因为污水的水质不是一成不变的,因此采用固定不变的反应时间必然不是最佳选择。MSBR经过不断的研究与改进,其技术与开发初期相比有了很大的提高。Unitank与MSBR类似之处都是改良型的SBR,都具有节省用地、易于实现自动化的优点,与Unitank、A2/O等工艺相比,MSBR具有如下优势:①从占地面积来看,MSBR因为采用了集约型的一体化设计及深池型结构,不设单独的二沉池和回流泵房,大大提高了土地的利用率。②MSBR系统是从连续运行的单元(即厌氧池或好氧池)进水,而不是从SBR(旁边的起沉淀作用的池子)进水,这样就将大部分好氧量从SBR池转移到连续运行池中。由于SBR池中的曝气及搅拌设备都不是连续运行的,将需氧量移到了主曝气池即改善了设备的利用率。对生物除磷来说,连续的厌氧池进水可大大提高厌氧区BOD5及VFA(挥发性脂肪酸)的浓度,从而改善除磷效果。③由于所有的生化反应都与反应物的浓度有关,连续的厌氧池进水加速了厌氧反应速率。厌氧后的污水进入缺氧池及曝气池,也即提高了缺氧区的反应速率以及曝气区的BOD5降解速率和硝化反应速率,从而改善了系统的整体处理效应,使得出水水质更好及系统的体积效率大大提高。④MSBR增加了低水头、低能耗的回流设施,从表面上看是增加了设备量和运行能耗。但是从更深层次来看问题,增加的基建费用及能耗有限,而回流设施极大地改善了系统中各个单元内MLSS的均匀性,即增加了连续运行单元的MLSS浓度(特别是提高了硝化反应的反应速率)和减少了SBR池的MLSS浓度,这样使得SBR池沉淀出水时的污泥层厚度大为降低,从而降低了出水中的悬浮物及由悬浮物带出的有机物数量(在出现水量冲击负荷时更为明显)。⑤MSBR系统的SBR池在起始阶段采用缺氧运行。缺氧运行能利用硝酸盐作为氧源来进行微生物的自身消化反应,稳定了活性污泥及减少了污泥产量,同时也降低了需氧量及能耗。同时,交替运行抑制了丝状菌的生存。缺氧运行也就改善了污泥的絮凝性能、沉降性能及浓缩性能,使得预沉淀区的污泥层更稳定,厚度也更小,进一步保证了悬浮物不会被出水带走。⑥MSBR系统的SBR池的水力条件经过了专门的处理。中间的底部挡板避免了水力射流的影响,从而改善了水力运行状态。在SBR池切换为沉淀池出水前的预沉淀过程中,在它的下部形成了一个高浓度的污泥层。该池的进水由SBR池的底部配水槽进入,穿过污泥层,污泥层起着接触过滤的作用,也即在利用来自曝气池混合液中的硝酸盐作为氧源进行污泥自身消化稳定的同时将进水中的悬浮物滤除。更确切地说,MSBR系统的SBR池在出水时起到的是滤池的作用而不是沉淀的作用,这与Unitank的SBR池的工作原理有着本质的区别。⑦MSBR系统采用空气堰控制出水,而Unitank是采用出水初期放空的形式排除已经进入集水槽内的悬浮固体。空气堰防止了曝气期间的任何悬浮物进入出水堰,从而有效地控制了出水悬浮物。初期放空还会增加进水的流量负荷。⑧最新的MSBR—BNR除磷系统附带了一项最新的除磷工艺专利。在回流污泥进入厌氧池前增加了一个污泥浓缩区。这样就减少了硝酸盐进入厌氧区机遇,减少了VFA因回流而造成稀释,增加了厌氧区的实际停留时间,从而大大提高了除磷效率。这项技术在上海进行的测试中证实可以将总磷从7—8mg/L降到0.3mg/L以下(平均为0.1mg/L)。⑨MSBR的SBR池有延时氧化阶段,而Unitank在运行时它的SBR池无延时氧化阶段,即Unitank在停止进水时立即停止曝气、开始预沉淀,这就使得有些有机物可能残留在SBR池内随出水带出。延时氧化是MSBR的专利,Unitank则不能采用这种方式运行。⑩MSBR一体化模块化设计,各单元均共壁构造,便于整体加盖进行尾气脱臭处理。

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功