集成式发动机辅助混合动力系统摘要本论文介绍了用于设计和开发HondaInsight发动机的技术方法,一种新的发动机辅助混合动力汽车,其总开发目标是在广泛的行驶条件下达到当今Civic消耗量的一半,实现35km/L(日本10-15模式),3.4L/km(98/69/EC)的消耗量。为了达到这个目标,加入了许多用于包装和集成发动机辅助系统以及改善发动机效率的新技术,开发了一种新的集成式发动机辅助混合动力发动机系统。这是结合了一种低空气阻力的新型轻稆车身开发的。环境性能目标也包括了低排放(日本2000年标准的一半,EU2000标准的一半),高效率和杨回收性。对消费的关键特性全面考虑,包括碰撞安全性能,操纵性和运行特性。1.绪论为减小汽车对社会和环境的冲击要求其更干净并且能量效率更高更节能,空气质量更好。降低CO2排放问题作为全球环境焦点提出,解决这些问题的方法之一就是混合动力汽车。Honda已开发并向遍及全球的几大市场输入Insight,新一代车辆设计。Insight将混合动力系与先进的车身技术特性相结合以符合取得实际的最高燃油经济性的总目标。混合动力系是发动机的辅助并联平行结构,把IMA叫做集成式发动机辅助。此动力系将把一个高效电动机与一个新型小排量VTEC发动机结合起来,很轻的铝车身,改良的空气动力学以实现3.4L/100km(CO2:80g/km)98/69/EC燃油经济性。低排放性能也已达到EU排放水平为目标。除减速能的重用之外,集成式发动机在典型的市区行驶加速时提供大助力扭矩,显著地减小了发动机拜师,提高了发动机效率。接近56kW每吨的功率/质量比保证了稳定的爬坡能力和高速的常速行驶能力。新发动机技术包括促进高效快速的催化剂活性化的一种新VTEC(电子控制可变配气相位和气门升程)缸盖设计,促进稀薄燃烧能降低排放的新型稀NOx催化转化器,广泛的减摩及减重特色也用于其中。2.开发目标及开发理念开发目的在于达到极低燃油消耗量。我们定下的目标是当今产品Civic燃油经济性的两倍,Honda的典型高燃油经济性轿车——7.0L/100km(93/116/EC),因而Insight在世界汽油机轿车中拥有最低的燃油消耗量。排放性能由于低燃油消耗量的缘故而趋于牺牲,但是,我们仍决定配备其它大多数批量生产的汽车所具备的低排放性能,在回收性(另一重要环境问题),碰撞安全性能以及操纵性和造型等汽车的基本性能方面也有考虑。综上所述,我们的开发目标如下:世界最好燃油消耗性能超低排放超回收性全世界最高碰撞安全性能水平先进造型实用特色和操纵灵敏性舒适的带有个性使用空间的二座结构3.降低燃油消耗量的策略为了建立起取得低燃油消耗目标的技术途径,我们对一辆装配1.5L发动机听Civic基型车辆能量消耗进行细节分析。为取得低燃油消耗和其它上述目的,我们发现将目标效率如图形1所示粗略地分为三部分是十分有用的。划分如下:发动机自身热效率的改善混合动力装置制动能量再生和怠速止挡应用降低重复和减小空气阻力和滚动阻力的车身技术图1.两倍于CIVIC燃油经济性的目标我们开发这种新集成式发动机辅助动力系瞄准为21世纪汽车动力系建立一个基准。这种动力系适合于下一代汽车,同时达到了极低3.4L/100km极低的燃油消耗量和低废气排放性能。本篇论文对新开发的IMA系统作了报告,包括用于HondaInsight的稀燃发动机,电动机功率控制单元,蓄电池技术和废气排放控制技术。4.IMA系统的目的为达到目的世界最低燃油消耗量,在开发下一代IMA混合动力系统时我们尽可能多地结合已取得的技术方法。为达到这个目标,建立了以下四个系统开发主题:减速能量的再生发动机效率的改善怠速止挡系统运用动力系尺寸、重量的减小5.1系统结构图2.IMA系统图3IMA系统的发动机速度(rpm)/输出特性曲线如图2所示,IMA系统以发动机作为主动力源,加速时用电动机作为辅助动力源。用电动机作为辅助动力源简化了整个系统并可采用轻型紧凑的发动机,蓄电池和功率控制单元(PCU)。在发动机与变速器间布置了一个永磁直流无电刷电动机,减速时为每个传动装置计算出减速比,PCU控制发电机发电(再生能量)对镍金属氢蓄电池充电,加速时由油门开度,发动机参数,蓄电池充电状态计算出辅助动力提供量(此后称辅助),PCU控制蓄电池流向驱动马达的电流量。5.2再生减速能量通过回收再生减速能量可在加速时补充发动机输出并减小油耗量。减小包括发动机摩擦损失在内的工作能量损失引起的阻力可增加可用的再生能,尤其是使发动机拜师减少到最小是减小摩擦的有效措施。降低发动机排量还有其它好处,例如减轻重量增加热效率。IMA系统通过优化发动机和变速箱参数有效地增加了减速时的再生能量。5.3减小发动机排量改善混合动力系燃油经济性中减小发动机排量是一个十分重要的因素。但是现代汽车须在广泛的动态范围内运行,减小排量就等于降低汽车的基本性能特征。如图3所示的输出特性曲线,利用电动机的大转矩性能特征IMA系统在低速范围内辅助发动机。电动机在低转速时能将总转矩提高50%,IMA系统取得了快速重启和不可思议的平滑启动成果。高转速范围时用电子控制可变配气相位和气门升程发动机提高输出。因此保证了足够的峰值功率,便可用一个新的1.0L小排量发动机。5.4稀燃发动机运行基于节气门开度,以电动机辅助,创造出十分线性的转矩特性,由此改善了操纵灵活性。除此之外,电动机辅助在中载条件下可扩大稀燃运行范围,显出了新开发稀烯发动机的潜力。6.电动机辅助机构6.1开发目标通过限速IMA电动机功能在阻力和再生两方面,确立的开发主题以取得以下两点:简单紧凑结构系统重量不大于整车质量的10%6.2直流无电刷电动机薄且紧凑的直流无电刷电动机具有发动机辅助和能源再生功能安装在曲轴上(图5),加速时辅助电动机是减小消耗量的十分有效的措施。这是一种高效、紧凑、轻型、永磁型三相同步电动机,最大输出功率为10kW。除了开发技术以减轻重量、提高效率之外,我们也尽可能把电动机做得最薄以获得紧凑的动力系。熔模铸造法用于转子,靠安装在曲轴上的弯曲而旋转。与正常铸造产品相比取得了高强度更轻的重量。转子磁铁方面,对HONDAEVPLUS的烧结钕磁铁作了进一步的改良,扭转强度提高了近90%,热阻也得到改良。这种设计也使电动机无需冷却系统。发明了一种有凸极集中绕组的可拆式定子结构并用于减小电动机的轴向宽度。比传统波形绕法,如图6所示。除此之外,从铜极引出的集中配电母线卡环可用于向定子两端线圈供电的线束固定,这使结构变得极简单紧凑。这些改良得到了一个厚度仅60mm的极薄电动机,与传统技术相比在厚度减小了40%。图5电机剖面图WavewindingSalientpolewinding图6绕阻比较图7电机的剖视图7发动机7.1开发目标为了在广泛的工况下获得低油耗以下四点作为开发主题:热效率改善减小机械损失(与传统设计相比小10%)减小尺寸和降低重量(同类产品中最轻)EU2000标准的一半7.2油耗由于在低转速时电动机辅助加强和VTEC发动机充足的峰值输出功率使得在电动机辅助动力系中可以大大地减小发动机排量。这款发动机的一个重要特色是通过稀燃技术而有显著的改善的燃烧率。采用了包括进气涡流口新气缸内强化涡流技术以达到这点,通过改良指示效率而获得的紧凑燃烧室和高压缩比对其也有帮助。这导致了与传统稀燃发动机相比更短的燃烧时间,在更高的空燃比下使其在更稀的范围内燃烧,显著地降低了油耗。这种强涡进气口和紧凑的燃烧室结果是在传统VTEC稀燃技术上的革新。传统VTEC发动机中,涡流是靠在低速工况下关闭一个进气阀门产生的,然而在新发动机中进气阀和进气口被排式竖直结构以在可燃物流向气缸时产生强涡流。传统VTEC结构中进排气摇臂各由独立的摇臂轴支撑,如图10所示,新VTEC机构将其合成一根单独的摇臂轴,显著地减小了尺寸,还将气门角从460减小为300,容许强旋涡形气门及更紧凑的燃烧室。图9发动机的侧视图图10气缸的剖面图7.3减小机械损失除了改良指示热效率,减小机械损失对改善燃油经济性也很重要,为了达到这个目标,采用了以下低磨擦技术:同轴滚子VTEC机构活塞微波纹处理偏置气缸结构低张力活塞环连杆渗碳同轴滚子VTEC结构HondaS2000(大功率跑车发动机)技术向单凸轮轴VTEC机构的改进。通过凸轮轴上的摇臂滑动区域使用滚针轴承可将凸轮轴驱动机构损失减小70%。另外,将VTEC开关活塞加入滚针轴承内轴同时减小了尺寸与重量。图11VTEC滚子剖面图活塞微波纹处理由创造微波表面的活塞裙部处理组成,它提高了油膜抑制性能,使用低摩擦损失机油时将减小近30%的摩擦,这些功效开发了标准相符的0W-20级低粘度油,其摩擦减小效用是发动机马达试验测量的,测试结果如图12所示。现今发动机技术中,HTTS处于极限摩擦值进精度为7.5Mpa,同先进低摩擦发动机结合应用,极限值比当今的发动机低得多。如图13所示,低摩擦技术大大地减小了发动机的总摩擦力。总的来说,与传统1.0L发动机相比降低了10%以上。图12摩擦减小中的极限图13发动机摩擦7.4减小重量总观了发动机中几乎所有零件结构和材料,带着创造世界1.0L产品中最轻的发动机目的,减轻重量甚至延伸到了骨架式结构技术和材料技术领域,如用于S2000的连杆渗碳。表面强化处理大大加快了发动机的营运速度,我们以此为IMA发动机制造出更细的连杆,与传统连杆相比重量减轻了近30%。图14磁性油底壳大多数油底壳是用钢板或铝合金制造,传统的镁材料已经有高温机油承受能力的问题,与传统材料相比,能在1200C以上温度承受显著落差的蠕变强度,我们开发的新型铝制的底壳(图14)能承受高达1500C的蠕变强度。油底壳用有铝制垫片的钢制螺栓固定以防止电蚀。此油底壳经铝制的轻35%,在重量的减轻是与两金属比质量相比的为进一步扩大塑制零件的应用,塑制材料在进气歧管、缸罩、水泵、皮带轮等进气系统零件中得到采用,这些变化使发动机自重小于60kg是世界1.0L产品中最小的。7.5废气排放性能本发动机采用能同时达到稀燃和低排放的技术,显著地降低了NOx排量,排气系统发动机后置改善服燃烧(图15)。除此之外,将排气歧管集成在缸盖上,新开发了一种能在稀燃工况时吸收NOx的催化剂,能降低NOx排放。Figure15.Sectionviewofemissionsystem图15排放系统的剖面图7.5.1集成排气歧管和缸盖传统缸盖每个气缸独立的排气门,在缸盖上再安装一排气歧管将这些排气门合起来。如图16所示,Insight缸盖有内置的排气门合并的结构,大大地减轻了重量。小小的热辐射表面减小了废气热损失,使催化过程更早进行。图16气缸盖主视图7.5.2稀NOX催化剂Insight催化系统包含了NOX吸附材料的三元催化转化器,如图17所示。Figure17.Exhaustgaspurificationmechanism图17废气净化装置在稀燃工况下,废气中的NOX被催化剂吸附。传统三元催化在稀燃工况下,能小量降低NOX,把大部分HC、CO氧化成CO2和H2O。由于废气中有大量的氧,所以相对少地降低NOX,大部分NOX都存储于吸附材料表面。在理论空燃比和更高时,废气被阻挡,利用HC和CO作为还原剂将吸附的NOX还原为氮,同时吸附过程也在进行。因此,利用有NOX吸附作用的三元催化器可有效地降低NOX、HC和CO。此催化剂在稀燃和理论配比工期况下表现出良好的转化性能,在NOX吸附量满载前有必要再生大气。稀燃时催化剂直接吸收NOX,在理论配比时将NOX还原为无害的氮排出,此催化剂以稀燃工况直接吸附NOX于表面为特征,而不是作为化合物吸附于表面内,方便了减小转化,提供了更高的高温承受能力。此催化器将稀燃工况下的NOX排量降低了传统的1/10。值得一提的是其吸附转化性能对燃料中硫含量十分敏感,因为硫会与NOX争夺吸附空间。传统催化器在稀燃运行时基本没有降低NOX排量,因此需减小稀燃范围以降低NOX排量。此催化剂确保了稀燃工况下改善燃油经济性,达到了EU2000标准,是遵守世界排放