高中数学(人教A版)选修2-1之2.3.2-双曲线的简单几何性质(1)-课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

双曲线的性质(一)221(0,0)mxnymn待定系数法求椭圆与双曲线标准方程时,可分别设为221(0)mxnymn如:焦点在y轴上,且过点)5,4/9(),24,3(YXF1F2A1A2B1B212222byax双曲线的简单几何性质标准方程范围对称性顶点焦点对称轴离心率渐近线02、对称性一、研究双曲线的简单几何性质)0,0(12222babyax1、范围axaxaxax,,12222即关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa)0,()0,(21aAaA、顶点是如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(22mmyxM(x,y)4、渐近线1A2A1B2BN(x,y’)Q:的位置关系它与xaby:的位置的变化趋势它与xaby的下方在xaby慢慢靠近xyoxabyxabyab)0(22xaxaby分的方程为双曲线在第一象限内部xabybabyax的渐近线为双曲线)0,0(12222(1)的渐近线为等轴双曲线)0(22mmyx(2)xy利用渐近线可以较准确的画出双曲线的草图(3)动画演示5、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。ca0e1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:(2)e的范围:(3)e的含义:11)(2222eacaacab也增大增大且时,当abeabe,),,0(),1(的夹角增大增大时,渐近线与实轴eace222bac二四个参数中,知二可求、、、在ecba(4)等轴双曲线的离心率e=?2(5)的双曲线是等轴双曲线离心率2e小结1:双曲线性质(1)标准方程范围对称性顶点焦点对称轴离心率渐近线12222byaxx≥a或x≤-a关于x轴,y轴,原点对称。A1(-a,0),A2(a,0)实轴A1A2虚轴B1B2F1(-c,0),F2(c,0)ace=YXF1F2A1A2B1B20y=abx±小结2:双曲线性质(2)标准方程范围对称性顶点焦点对称轴离心率渐近线y≥a或y≤-a关于x轴,y轴,原点对称B1(0,-a),B2(0,a)实轴B1B2虚轴A1A2F1(0,-c),F2(0,c)ace=y=bax±12222axbyXYF1F2OB1B2A2A112222bxay小结ax或axayay或)0,(a),0(axabyxbayace)(222bac其中关于坐标轴和原点都对称性质双曲线)0,0(12222babyax)0,0(12222babxay范围对称性顶点渐近线离心率图象043xy0125xy方程(1)的焦点坐标____________;实半轴长____;渐近线方程方程(2)的焦距___;虚轴长__;渐近线方程是例1.回答下列问题:.144169)2(;114425)1(2222xyxy106(13,0),(-13,0)12xy125xy34的双曲线渐近线方程是形如12222byax⑦0byax;0byax12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy43渐近线方程为)0,10(),0,10(21FF焦点.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,,离心率离是已知双曲线顶点间的距xe例21、若双曲线的渐近线方程为则双曲线的离心率为。2、若双曲线的离心率为2,则两条渐近线的交角为。4,3yx课堂练习⑴与双曲线221916xy有共同渐近线,且过点(3,23);⑵与双曲线221164xy有公共焦点,且过点(32,2)例3:求下列双曲线的标准方程:例题讲解⑴法一:直接设标准方程,运用待定系数法考虑.(一般要分类讨论)解:双曲线221916xy的渐近线为43yx,令x=-3,y=±4,因234,故点(3,23)在射线43yx(x≤0)及x轴负半轴之间,∴双曲线焦点在x轴上,∴设双曲线方程为22221xyab(a0,b0),∴222243(3)(23)1baab解之得22944ab,∴双曲线方程为221944xy根据下列条件,求双曲线方程:⑴与双曲线221916xy有共同渐近线,且过点(3,23);法二:巧设方程,运用待定系数法.⑴设双曲线方程为,22(0)916xy22(3)(23)91614221944双曲线的方程为xy:2222的双曲线渐近线方程又如ybxa0byax;0byax的双曲线渐近线方程是形如2222byax(1)22222222,0,0,ybxabyaxbyaxbyax则可设双曲线方程为方程是若已知双曲线的渐近线则可设双曲线方程为方程是若已知双曲线的渐近线反之(2)也就是说:222222221axbyaxby与222222221xyxyabab与具有相同的渐近线。法一:直接设标准方程,运用待定系数法⑵解:设双曲线方程为22221xyab(a0,b0)则22222220(32)21abab解之得22128ab∴双曲线方程为221128xy根据下列条件,求双曲线方程:⑵与双曲线221164xy有公共焦点,且过点(32,2).法二:设双曲线方程为221164xykk16040kk且221128xy∴双曲线方程为22(32)21164kk∴,解之得k=4,222221,2012(30)xymmm或设求得舍去1、“共渐近线”的双曲线的应用222222221(0)xyabxyab与共渐近线的双曲线系方程为,为参数,λ0表示焦点在x轴上的双曲线;λ0表示焦点在y轴上的双曲线。2222222222222211,1.xyxyabmmcxymcm2、与共焦点的椭圆系方程是双曲线系方程是2231492454xye、求与椭圆有公共焦点,且离心率的双曲线方程。.1916,91625,4455,1505.5,252449222222222yxbaaayaxcc可得求得然后由设共焦点的双曲线为),,焦点为(得解:由1,1122222222222222mcymxcmymxbyax双曲线系方程是共焦点的椭圆系方程是注:与4.求与椭圆xy221681有共同焦点,渐近线方程为xy30的双曲线方程。解:椭圆的焦点在x轴上,且坐标为),(,,022)022(21FF双曲线的焦点在轴上,且xc22双曲线的渐近线方程为xy33bacabab33822222,而,解出2622ba,双曲线方程为xy2262112byax222(a>b>0)12222byax(a>0b>0)222ba(a>0b>0)c222ba(a>b>0)c椭圆双曲线方程abc关系图象yXF10F2MXY0F1F2p小结渐近线离心率顶点对称性范围准线|x|a,|y|≤b|x|≥a,yR对称轴:x轴,y轴对称中心:原点对称轴:x轴,y轴对称中心:原点(-a,0)(a,0)(0,b)(0,-b)长轴:2a短轴:2b(-a,0)(a,0)实轴:2a虚轴:2be=ac(0<e<1)ace=(e1)无y=abx±cax2cax2

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功