反证法的一般步骤:与已知条件矛盾假设命题结论反面成立推理得出矛盾与定理,定义,公理矛盾假设不成立即所证命题成立解析:由∠C=90°可知是直角三角形,根据勾股定理可知a2+b2=c2.如图,在△ABC中,AB=c,BC=a,AC=b,如果∠C=90°,a、b、c三边有何关系?为什么?ACBabc一、复习引入探究:假设a2+b2=c2,由勾股定理可知三角形ABC是直角三角形,且∠C=90°,这与已知条件∠C≠90°矛盾。假设不成立,从而说明原结论a2+b2≠c2成立。ACC若将上面的条件改为“在△ABC中,AB=c,BC=a,AC=b,∠C≠90°”,请问结论a2+b2≠c2成立吗?请说明理由。abc这种证明方法与前面的证明方法不同,它是首先假设结论的反面成立,然后经过正确的;逻辑推理得出与已知、定理、公理矛盾的结论,从而得到原结论的正确。象这样的证明方法叫做反证法。问题:发现知识:二、探究本节要求必须掌握的两种反证题型:1.角度问题2平行问题三、应用新知在△ABC中,AB≠AC,求证:∠B≠∠CABC证明:假设,则()这与矛盾.假设不成立.∴.∠B=∠CAB=AC等角对等边已知AB≠AC∠B≠∠C小结:反证法的步骤:假设结论的反面不成立→逻辑推理得出矛盾→肯定原结论正确例1尝试解决问题感受反证法:求证:在一个三角形中,至少有一个内角小于或等于60°。已知:△ABC求证:△ABC中至少有一个内角小于或等于60°.证明:假设,则。∴,即。这与矛盾.假设不成立.∴.△ABC中没有一个内角小于或等于60°∠A60°,∠B60°,∠C60°∠A+∠B+∠C180°三角形的内角和为180度△ABC中至少有一个内角小于或等于60°.点拨:至少的反面是没有!例2∠A+∠B+∠C60°+60°+60°=180°例3、用反证法证明:等腰三角形的底角必定是锐角.分析:解题的关键是反证法的第一步否定结论,需要分类讨论.已知:在△ABC中,AB=AC.求证:∠B、∠C为锐角.证明:假设等腰三角形的底角不是锐角,那么只有两种情况:(1)两个底角都是直角;(2)两个底角都是钝角;(1)由∠A=∠B=90°则∠A+∠B+∠C=∠A+90°+90°180°,这与三角形内角和定理矛盾,∴∠A=∠B=90°这个假设不成立.(2)由90°<∠B<180°,90°<∠C<180°,则∠A+∠B+∠C180°,这与三角形内角和定理矛盾.∴两个底角都是钝角这个假设也不成立.故原命题正确∴等腰三角形的底角必定是锐角.说明:本例中“是锐角(小于90°)”的反面有两种情况,这时,必须分别证明命题结论反面的每一种情况都不可能成立,最后才能肯定命题的结论一定正确.此题是对反证法的进一步理解.证明:假设a与b不止一个交点,不妨假设有两个交点A和A’。因为两点确定一条直线,即经过点A和A’的直线有且只有一条,这与与已知两条直线矛盾,假设不成立。所以两条直线相交只有一个交点。小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾例4求证:两条直线相交只有一个交点。已知:如图两条相交直线a、b。求证:a与b只有一个交点。abA●A,●A证明:假设a与b不平行,则可设它们相交于点A。那么过点A就有两条直线a、b与直线c平行,这与“过直线外一点有且只有一条直线与已知直线平行矛盾,假设不成立。∴a//b.小结:根据假设推出结论除了可以与已知条件矛盾以外,还可以与我们学过的定理、公理矛盾已知:如图有a、b、c三条直线,且a//c,b//c.求证:a//babc例5求证:在同一平面内,如果一条直线和两条平行线中的一条相交,那么和另一条也相交.已知:直线l1,l2,l3在同一平面内,且l1∥l2,l3与l1相交于点P.求证:l3与l2相交.证明:假设____________,那么_________.因为已知_________,这与“____________________________________”矛盾.所以假设不成立,即求证的命题正确.l1l2l3Pl3与l2不相交.l3∥l2l1∥l2经过直线外一点,有且只有一条直线平行于已知直线所以过直线l2外一点P,有两条直线和l2平行,四。巩固新知1、试说出下列命题的反面:(1)a是实数。(2)a大于2。(3)a小于2。(4)至少有2个(5)最多有一个(6)两条直线平行。2、用反证法证明“若a2≠b2,则a≠b”的第一步是。3、用反证法证明“如果一个三角形没有两个相等的角,那么这个三角形不是等腰三角形”的第一步。a不是实数a小于或等于2a大于或等于2没有两个一个也没有两直线相交假设a=b假设这个三角形是等腰三角形五、体验反证法1、已知:如图,在△ABC中,AB=AC,∠APB≠∠APC。求证:PB≠PCABCP证明:假设PB=PC。在△ABP与△ACP中AB=AC(已知)AP=AP(公共边)PB=PC(已知)∴△ABP≌△ACP(S.S.S)∴∠APB=∠APC(全等三角形对应边相等)这与已知条件∠APB≠∠APC矛盾,假设不成立.∴PB≠PC在一元二次方程中,a,b,c均为奇数时,方程无实数解。02cbxax