控制工程基础课后答案(杨建玺、徐莉萍著)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

控制工程基础课后答案423222222231.342632.631031033.5sin23cos2444124.sin2cos2sin4216445.8sin344cos636tLesLttsssssLttsssLttLtssLtLtss2.1322223444222441146.17.sin4131628.229.cos2cos2sin2422422222444444110.sin3cos2sin5s2ttttttttLteLetsssLtesLetLetetsssssLettLet22in15112242541tss2sincossinsin1231132211222112211125251.2.2523434333.4cos2sin22444215234.251421=1tsLteLLtssssssLLttsssssLLssssLs22552cos2sin22414ttetets2.2001110(),1(1)()(2)()()10(1)lim()lim()lim101101010(2)()101011lim()lim101010tssttttFsssftFstftftsFssftLLessssfte已知利用终值定理,求t时的通过取的反拉氏变换,求时的值解:2.32(1)()2()0(0)3;()(0)2()0(0)3()22()3txtxtxsXsxXsxXsssxte,初始条件解:方程两边同时进行拉氏变换得到:2.422(2)()3()2()3(0)2(0)1;3()(0)(0)3()3(0)2()1254()112tytytyteyysYssyysYsyYssssYssss,初始条件,解:方程两边同时进行拉氏变换得到:2.423122111221123222254()1121122541()11222547()1122254()221117()222sssssstttAAAssYsssssssssAYssssssAYssssssAYssssyteee令,则3.12mBk()ytxt()myBykxymyBykykxⅱ?=+-ⅱ?-+=解:由受力分析可知整理后得到121121()()()()()()()()()()()()()()()()BytKytKxtmytBytKytKxtmytBBytbxtBytKKytBxtkxtb)c)a)d)3.121212KKftmxtxtKK3.133.14c)1i1Couiu1R2R2C2i()()()()11211112212212121122121212112211ioooooiiiiRidtCuiRuuiiRiidtCRRCCuRCRCRCuuRRCCuRCRCuu==+=+++ⅱ?++++=ⅱ?+++òò由基本电路方程可知整理后得到3.14011221120121iiduduRCCRCCCCuRCCCudtdt由③、④得:3.151G2H1H)(isX)(osX3G3H2G1G212HGG1H)(isX)(osX3G3H2G1G2121HGG1H)(isX)(osX232331GGGGH)(isX)(osX1233223312311GGGGHGGHGGGH3.16+()Ns++1()Gs3()Gs()iXs()oXs()Es2()Gs123312312312311oiooiGGGGXXXGGNGXXNGGGGGG2122221001010,,1001000.11101GsGsGsssss622622226101001000.11101101001000.11101001000.1110110oiXsXssssssssNsssss3.173.18()4(75.)4Gsss=+单位负反馈系统开环传递函数为试求系统单位阶跃响应。Gs)(isXo()Xs()()()()2415452,4oinXsGsXsGssswx==+++==解:系统框图为闭环传递函数为()()()()()241=414=5414411331441133iottXssXssssssssssxtee--=?++++-=++++=-+当输入量为单位阶跃时,输入的拉氏变换为此时输出的拉氏变换为对上式进行逆拉氏变换可得输出为.4.905对图示系统求闭环阻尼为时对应的K,并求求系统单位阶跃响应的调整时间、最大超调量和峰值时间。0.11Kss)(isXo()Xs()()()()2101101010=0.5210=1010oinnnXsGsKXsGsssKKKwxxww==+++===解:系统闭环传递函数为上式对比二阶系统标准形式后可知。已知,由可得。因此可以解得2120.51040.808100%16.3%0.3641nsnppdntexpxxwxwppwwx--==D===?===-二阶欠阻尼系统:,=2%时对应的调整时间秒最大超调量M峰值时间t秒223()10()4635.4()4631.8rttrtttrtttt==++=+++试求输入分别为,和时的系统稳态误差。101101sss()Rso()Xs()Es()()()()()()()()01110111101limli1msstsEsRsRsGsssseetsEs==++++==解:。系统的偏差为稳态系误差统为统为型系()()()()()0200()10lim110lim101110110lim1011011sssssrttesEsssssssss®®®===+++=+++=输入为时系统的稳态偏差为()()()()()()()()()202300223()463lim1466lim1011101466lim101010s1110111011101466=1100()4631.8sssssrtttesEsssssssssssssssssrtttt®®®=++=骣÷ç=++÷ç÷ç桫+++骣÷ç÷ç÷ç÷ç÷ç=++÷ç÷ç÷÷ç+++÷ç÷ç++++++桫=++?+?=+++输入为时系统的稳态偏差为同理,输入为时系统的稳态偏差为无穷大P116表5.1不同类型系统的静态误差系数及在不同输入作用下的稳态误差处于主对角线上的稳态偏差是有限值;在主对角线上方,稳态偏差为无穷大;在主对角线下方,稳态偏差为零。常数输入()ixtk=速度为常数的输入()ixtkt=加速度为常数的输入2()ixtkt=0型有限值∞∞1型0有限值∞2型00有限值3型000200.51lim02400xSSSSS5.7()1()()21()140202ixttnttKK输入为单位阶跃和干扰信号同为阶跃信号,试求)当和时系统的稳态误差)若在扰动前引入积分环节对稳态误差有何影响?若在扰动后引入积分环节,对稳态误差有何影响?==?==+()Ns++0.051Ks()iXs()oXs()Es2.515s+()Ns++1Gs()iXs()oXs()EsHs2Gs12122121212.50.0515111iioiiKGsGsHsssEXNEXXHXEGNGHGHEXNGGHGGH,,首先寻找偏差、输入和扰动之间的关系:由图可知整理上式后得出1)解:()()()12.55112.50.0515iXsNssEsKss-鬃+=+鬃++0001122.55limlim112.50.051551115lim0112.510.05152ssssssssesEssKsssKKss1212122212122)01/1111111/111111111iiGsGHEXNGGHGGHssGsGHsEXNGGHGGHss解:原系统为型系统。在扰动前引入积分环节,即上再串联一个,则有说明系统对输入和扰动均提升为型系统。在扰动后引入积分环节,即上再串联一个,则有2121210iGHXNsGGHGGHs说明系统对输入为型系统,对扰动为型系统。6.1如图系统,根据频率特性的物理意义,求下列信号输入作用下的系统稳态输出。()Rs()Cs11s1)()sin22)()2cos2453)()sin22cos245rttrttrttt21()()21()2()sin()()sin()1()4()arctan2GsGssGjjrtAtctAGjtGj解:令闭环传递函数为,则。所以闭环系统频率特性为。由频率特性可知,当输入时,系统幅频特性为系统相频特性为2221()sinarctan241211)()sin2arctan=sin245222422)()2cos2452sin245221()sin245arctan=sin222423)2ctAtctttrtttcttt所以本系统输出表达式为输入是以上者的叠加,根据叠加11()sin245+sin2222cttt原理:2()()121GsHsss6.21)-1012-1.4-1.2-1-0.8-0.6-0.4-0.200.2NyquistDiagramRealAxisImaginaryAxis2()()121GsHsss0.10.5110-180-135-90-450Phase(deg)BodeDiagramFrequency(rad/sec)-40-30-20-100610Magnitude(dB)1()()0.110.51GsHssss6.23)1()()0.110.51GsHssss1210-80-60-40-20020Magnitude(dB)1210-270-225-180-135-90Phase(deg)BodeDiagramFrequency(rad/sec)-20-40-6021()(),10,0.510.10.01GsHsss6.25)-1-0.500.51-1-0.500.5NyquistDiagramRealAxisImaginaryAxis21()(),10,0.510.10.01GsHsss-40-200Magnitude(dB)100101102-180-135-90-450Phase(deg)BodeDiagramFrequency(rad/sec)-40250(0.61)()()(41)sGsHsss6.27)250(0.61)()()(41)sGsHsss6.27)-4004080Magnitude(dB)-10.2511.6710-240-210-180Phase

1 / 76
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功