1.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证明:CF=EFAEBFCD解:过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF≌△CDF,∴EF=CF2.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。证明:过点C作CG⊥CA交AF延长线于G∴∠G+∠GAC=90°…………①又∵AE⊥BD∴∠BDA+∠GAC=90°…………②综合①②,∠G=∠BDA在△BDA与△AGC中,∵∠G=∠BDA∠BAD=∠ACG=90°BA=CA∴△BDA≌△AGC∴DA=GC∵D是AC中点,∴DA=CD∴GC=CD由∠1=45°,∠ACG=90°,故∠2=45°=∠1在△GCF与△DCF中,∵GC=CD∠2=45°=∠1CF=CF∴△GCF≌△DCF∴∠G=∠FDC,又∠G=∠BDA∴∠ADB=∠FDCABCDEGFKOH3.如图,梯形ABCD中,AD∥BC,CD⊥BC,BC=CD,O是BD的中点,E是CD延长线上一点,作OF⊥OE交DA的延长线于F,OE交AD于H,OF交AB于G,FO的延长线交CD于K,求证:OE=OF提示:由条件知△BCD为等腰Rt△,连接OC,可证△OCK≌△ODH(AAS),得OK=OH,再证△FOH≌△EOK(AAS),得OE=OF4.如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.解:∵四边形ABCD是正方形,∴DC=BC,∠DCM=∠NBC=90°,又∵CN⊥DM交AB于N,∴∠NCM+∠CMD=90°,而∠CMD+∠CDM=90°,∴∠NCM=∠CDM,∴△DCM≌△CBN,∴CM=BN,再根据四边形ABCD是正方形可以得到OC=OB,∠OCM=∠OBN=45°,∴△OCM≌△OBN.∴OM=ON,∠COM=∠BON,而∠COM+∠MOB=90°,∴∠BON+∠MOB=90°.∴∠MON=90°.∴OM与ON之间的关系是OM=ON;OM⊥ON.5.如图,正方形CGEF的对角线CE在正方形ABCD的边BC的延长线上(CG>BC),M是线段AE的中点,DM的延长线交CE于N.探究:线段MD、MF的关系,并加以证明.证明:根据题意,知AD∥BC.∴∠EAD=∠AEN(内错角相等),∵∠DMA=∠NME(对顶角相等),又∵M是线段AE的中点,∴AM=ME.∴△ADM≌△ENM(ASA).∴AD=NE,DM=MN.(对应边相等).连接线段DF,线段FN,线段CE是正方形的对角线,∠DCF=∠NEF=45°,根据上题可知线段AD=NE,又∵四边形CGEF是正方形,∴线段FC等于FE.∴△DCF≌△NEF(SAS).∴线段FD=FN.∴△FDN是等腰三角形.∴线段MD⊥线段MF.6.如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.证明:BM+CN=NM延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,∵DB=DC,CE=BM,∴△DCE≌△BMD,∵∠MDN=∠NDE=60°∴DM=DE(上面已经全等)∴DN=ND(公共边)∴△DMN≌△DEN∴BM+CN=NM.7.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.8.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.9.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;证明:∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°.∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=30°.∴AD=BD.在DE上截取DM=DC,连接CM,∵AD=BD,AC=BC,DC=DC,∴△ACD≌△BCD.∴∠ACD=∠BCD=45°.∵∠CAD=15°,∴∠EDC=60°.∵DM=DC,∴△CMD是等边三角形.∴∠CDA=∠CME=120°.∵CE=CA,∴∠E=∠CAD.∴△CAD≌△CEM.∴ME=AD.∴DA+DC=ME+MD=DE.即AD+CD=DE.10.如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.证明:∵AF平分∠DAE,∠D=90°,FH⊥AE,∴∠DAF=∠EAF,FH=FD,在△AHF与△ADF中,∵AF为公共边,∠DAF=∠EAF,FH=FD(角平分线上的到角的两边距离相等),∴△AHF≌△ADF(HL).∴AH=AD,HF=DF.又∵DF=FC=FH,FE为公共边,∴△FHE≌△FCE.∴HE=CE.∵AE=AH+HE,AH=AD=CD,HE=CE,∴AE=EC+CD.11.已知梯形ABCD中,AB∥CD,BD⊥AC于E,AD=BC,AC=AB,DF⊥AB于F,AC、DF相交于DF的中点O.求证:AB+CD=2BE.证明:过D作DM∥AC交BA的延长线于M.∵梯形ABCS中,AD=BC,∴BD=AC.又∵CD∥AM,DM∥AC,∴四边形CDMA为平行四边形.∴DM=AC,CD=AM.∵MD∥AC,又AC⊥BD,且AC=BD,∴DM⊥BD,DM=BD,∴△DMB为等腰直角三角形.又∵DF⊥BM,∴DF=BF.∴BM=2DF=2BF∴AM+AB=2BF.∵CD=AM,∴AB+CD=2BF.∵AC=BD=AB,∴在△BEA和△BFD中,△BEA≌△BFD.∴BE=BF.∵AB+CD=2BF,∴AB+CD=2BE.12.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.证明:(1)∵CF平分∠BCD,∴∠BCF=∠DCF.在△BFC和△DFC中,∴△BFC≌△DFC.∴BF=DF,∴∠FBD=∠FDB.连接BD.∵DF∥AB,∴∠ABD=∠FDB.∴∠ABD=∠FBD.∵AD∥BC,∴∠BDA=∠DBC.∵BC=DC,∴∠DBC=∠BDC.∴∠BDA=∠BDC.又BD是公共边,∴△BAD≌△BED.∴AD=DE.13.如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;证明:连接AC,∵DC∥AB,AB=BC,∴∠1=∠CAB,∠CAB=∠2,∴∠1=∠2;∵∠ADC=∠AEC=90°,AC=AC,∴△ADC≌△AEC,∴CD=CE;∵∠FDC=∠GEC=90°,∠3=∠4,∴△FDC≌△GEC,∴CF=CG.14.如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO证明:过点P作PQ⊥OB于Q,则∠PQB=90°∵OP平分∠AOB,且PC⊥OA,PQ⊥OB∴PC=PQ在Rt△POC与Rt△POQ中,∵PC=PQPO=PO∴Rt△POC≌Rt△POQ(HL)∴OC=OQ∴2OC=OC+OQ=OC+OB+BQ在Rt△PCA与Rt△PQB中,∵PC=PQPA=PB∴Rt△PCA≌Rt△PQB(HL)∴CA=QB又2OC=OC+OB+BQ∴2OC=OC+OB+CA=OA+OB15.已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;证明:∵∠ABC=90°,DE⊥AC于点F,∴∠ABC=∠AFE.∵AC=AE,∠EAF=∠CAB,∴△ABC≌△AFE∴AB=AF.连接AG,∵AG=AG,AB=AF,∴Rt△ABG≌Rt△AFG.∴BG=FG•解:∵△ABE、△ADF是等边三角形•∴FD=AD,BE=AB•∵AD=BC,AB=DC•∴FD=BC,BE=DC•∵∠B=∠D,∠FDA=∠ABE•∴∠CDF=∠EBC•∴△CDF≌△EBC,•∵AF=FD,AE=DC,EF=CF•∴△EAF≌△CDF•∴∠CDF=∠EAF,•∵∠AFC=∠AFE+∠EFD+∠DFC,∠AFE+∠EFD=60°•∴∠AFC-∠DFC=60°•∴∠AFE=∠DFC•∴∠EFC=60°•同理,∠FEC=60°•∵CF=CE•∴△ECF是等边三角形16.如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,连接CE、CF,求证:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边△17.已知正方形ABCD中,F为对角线BD上一点,过F点作EF⊥BA于E,G为DF中点,连接EG,CG.求证:EG=CG;证明:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.18.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.解:在AC上取AF=AE,连接OF,则△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.19.已知:如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.解:如图,在AB上截取AF=AD,∴AE平分∠BAD,∴∠DAE=∠FAE,∵AF=AD,AE=AE,∴△DAE≌△FAE,∴∠D=∠AFE,∠DEA=∠FEA,∵AD∥BC