二次函数复习课二次函数知识点导航:1、二次函数的定义2、二次函数的图像及性质3、求解析式的的三种方法4、a,b,c及相关符号的确定5、抛物线的平移6、二次函数与一元二次方程的关系7、二次函数的应用题8、二次函数的综合运用一、二次函数的定义cbxaxy2定义:)是常数,、、0(acba,其中是二次函52332xxy21xy、练习:xxy222、25100xy、数的有个22.当m_______时,函数是二次函数.12)1(2xxmymm2二、二次函数的几种形式:y=ax2(a≠0)y=ax2+c(a≠0)y=a(x-h)2+k(a≠0)y=ax2+bx+c(a≠0)y=a(x-x1)(x-x2)(a≠0)三、二次函数的图象及性质抛物线开口方向对称轴顶点坐标最值增减性y=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+ka>0向上a<0向下y轴直线x=h直线x=hy轴(0,0)(0,k)(h,0)(h,k)abacababx44,222顶点坐标是:,对称轴为:直线二次函数y=ax2+bx+c(a≠0)abacabxa44)2(221.抛物线y=(x-3)2的开口方向,对称轴是,顶点坐标为,在对称轴左侧,即x时,y随x增大而;在对称轴右侧,即x时,y随x增大而,当x=时,y有最值为.2.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数,图象顶点必在().A.直线y=-x上B.x轴上C.直线y=x上D.y轴上上3x直线)0,3(3减小3增大3小0A4.函数y=-2x2+8x-8的顶点坐标为.3.将函数y=-x2-2x化为y=a(x-h)2+k的形式为.对称轴为.1)1(2xy)0,2(2x直线2、顶点式:已知抛物线顶点坐标(h,k)或对称轴X=h,通常设抛物线解析式为_______________3、交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________1、一般式:已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2)(a≠0)四、求抛物线解析式的三种方法练习:根据下列条件,求二次函数的解析式。(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。xxy21127)1(23)2(2)2(2xyxxy2121)3(例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求:二次函数的解析式。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1∴顶点坐标为(1,2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a(3-1)2+2∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即:y=-2x2+4x五、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定开口向上a0开口向下a0(2)C的符号:由抛物线与y轴的交点位置确定.交点在x轴上方c0交点在x轴下方c0经过坐标原点c=0(3)b的符号:由对称轴的位置确定对称轴在y轴左侧a、b同号对称轴在y轴右侧a、b异号对称轴是y轴b=0(4)b2-4ac的符号:由抛物线与x轴的交点个数确定与x轴有两个交点b2-4ac0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac0-2(5)、二次函数y=ax2+bx+c(a≠0)的几个特例:1)、当x=1时,2)、当x=-1时,3)、当x=2时,4)、当x=-2时,y=y=y=y=6)、2a+b0.xyo1-12>0<0>0<0>02212baabab5)、b²-4ac0.>a+b+ca-b+c4a+2b+c4a-2b+cxy1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c0B、a0,b0,c0C、a0,b0,c0D、a0,b0,c0xy2、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A、a0,b0,c=0B、a0,b0,c=0C、a0,b0,c0D、a0,b0,c=0xy3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c、△的符号为()A、a0,b=0,c0,△0B、a0,b0,c0,△=0C、a0,b=0,c0,△0D、a0,b=0,c0,△0BACooo练习:熟练掌握a,b,c,△与抛物线图象的关系(上正、下负)(左同、右异)·c4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和二、三、四象限,判断a、b、c的符号情况:a0,b0,c0.xyo=5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,且它的顶点在第三象限,则a、b、c满足的条件是:a0,b0,c0.xyo=6.二次函数y=ax2+bx+c中,如果a0,b0,c0,那么这个二次函数图象的顶点必在第象限先根据题目的要求画出函数的草图,再根据图象以及性质确定结果(数形结合的思想)xy四7.已知二次函数的图像如图所示,下列结论:⑴a+b+c=0⑵a-b+c﹥0⑶abc﹥0⑷b=2a其中正确的结论的个数是()A1个B2个C3个D4个Dx-110y要点:寻求思路时,要着重观察抛物线的开口方向,对称轴,顶点的位置,抛物线与x轴、y轴的交点的位置,注意运用数形结合的思想。1x如图,在同一坐标系中,函数y=ax+b与y=ax2+bx(ab≠0)的图象只可能是()xyoABxyoCxyoDxyoD8、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系内的大致图象是()xyoxyoxyoxyo(C)(D)(B)(A)C六、抛物线的平移左加右减,上加下减练习⑴二次函数y=2x2的图象向平移个单位可得到y=2x2-3的图象;二次函数y=2x2的图象向平移个单位可得到y=2(x-3)2的图象。⑵二次函数y=2x2的图象先向平移个单位,再向平移个单位可得到函数y=2(x+1)2+2的图象。下3右3左1上2引申:y=2(x+3)2-4y=2(x+1)2+22、由二次函数y=x2的图象经过如何平移可以得到函数y=x2-5x+6的图象.y=x2-5x+641)25(2xy=x241)25(2xy练习1.函数y=5(x-3)2-2的图象可由函数y=5x2的图象沿x轴向平移个单位,再沿y轴向平移个单位得到.右3下2二次函数y=ax²+bx+c的图象和x轴交点的横坐标,便是对应的一元二次方程ax²+bx+c=0的解。二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点b2–4ac0b2–4ac=0b2–4ac0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0七、二次函数与一元二次方程的关系判别式:b2-4ac二次函数y=ax2+bx+c(a≠0)图象一元二次方程ax2+bx+c=0(a≠0)的根xyO与x轴有两个不同的交点(x1,0)(x2,0)有两个不同的解x=x1,x=x2b2-4ac>0xyO与x轴有唯一个交点)0,2(ab有两个相等的解x1=x2=ab2b2-4ac=0xyO与x轴没有交点没有实数根b2-4ac<0例(1)如果关于x的一元二次方程x2-2x+m=0有两个相等的实数根,则m=____,此时抛物线y=x2-2x+m与x轴有____个交点.(2)已知抛物线y=x2–8x+c的顶点在x轴上,则c=____.1116(3)一元二次方程3x2+x-10=0的两个根是x1=-2,x2=,那么二次函数y=3x2+x-10与x轴的交点坐标是____.(-2、0)35)035(,作业:(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y0?x为何值时,y0?23212xxy已知二次函数已知二次函数y=(m-2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的表达式;(2)求出二次函数图象的顶点坐标、对称轴.作业:某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?解:设每个房间每天增加x元,宾馆的利润为y元Y=(50-x/10)(180+x-20)Y=-1/10x²+34x+8000八、综合应用:练习:某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个。(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是元;这种篮球每月的销售量是个(用含的代数式表示)。(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请你求出最大利润,此时篮球的售价应定为多少元?210(20)9000yx